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Abstract—Deep neural networks tend to underestimate un-
certainty and produce overly confident predictions. Recently
proposed solutions, such as MC Dropout and SDENet, require
complex training and/or auxiliary out-of-distribution data. We
propose a simple solution by extending the time-tested iterative
reweighted least square (IRLS) in generalised linear regression.
We use two sub-networks to parametrise the prediction and
uncertainty estimation, enabling easy handling of complex inputs
and nonlinear response. The two sub-networks have shared
representations and are trained via two complementary loss
functions for the prediction and the uncertainty estimates, with
interleaving steps as in a cooperative game. Compared with more
complex models such as MC-Dropout or SDE-Net, our proposed
network is simpler to implement and more robust (insensitive to
varying aleatoric and epistemic uncertainty).

I. INTRODUCTION

Despite tremendous achievements of Deep Neural Networks
(DNNs) in many real life applications, it is known that DNNs
tend to make overconfident predictions even in environments
with high uncertainty (e.g. high noise in data) [1]. This has the
undesired consequence of loss of generalization performance
in presence of high uncertainty [2]. This is because when
training sample includes high levels of noise, DNNs often will
produce wildly wrong predictions on the validation set [3].
This presents us with the need of uncertainty-aware DNNs
that know when high uncertainty is present in the data. Proper
quantification of uncertainty and utilizing that uncertainty to
get better generalization performance on data with high noise
(such as in financial data) can be highly beneficial to many
real-life applications [4].

Existing approaches of quantifying uncertainty generally
makes prior assumptions on distribution of noise implicitly
or explicitly. Moreover, a number of these methods are based
on Bayesian Neural Nets (BNNs) [5] or model ensembles [6].
Other approaches, such as that in [7] suffer when the task in
hand has inherent randomness, i.e. aleatoric uncertainty. For
example, in SDEnet [8], to train the diffusion network, noise is
simulated from a standard Gaussian distribution. Even though,
such method can model aleatoric uncertainty properly in a
regression environment if noise is normally distributed, the
method has two major limitations: (i) Need of auxilary data
for modelling noise (this noise is simulated during training)
(ii) No direct method of utilizing the modelled noise to achieve
unbiased estimate of the mean.

In contrast, here we take a more data-driven approach to
quantifying uncertainty in a regression environment. We pro-
pose a multi-task based neural network structure that estimates
mean and variance separately from the shared representation of
input data. Motivated by the simple squared residual method
used in statistics for estimating variance, the residuals we
achieve from our mean estimation network is applied to fit the
variance estimation network. In turn, this estimated variance is
used along with the estimated mean to optimize the weighted
least squares, which is known to provide a more unbiased
estimation in presence of hetero-skedasticity (non-constant
noise) [9].

Our model provides two benefits over the existing tech-
niques: (1) The model is more data-driven since it directly
learns the conditional variance from the residual errors, avoid-
ing the need for stochastic noise simulation using prior as-
sumptions. (2) The estimated conditional variance is directly
used to reduce model bias on noisy data, making the model
more robust.

To summarize, the main contributions of this paper are:
• We provide further evidence for the importance of explicit

uncertainty modeling in neural regression models. In
particular, we show that ignoring uncertainty in regression
models leads to poor performance not only in individual
predictions but also in the aggregated prediction. And the
latter has significant consequence in many applications
including portfolio-based finance risk management.

• We develop a neural network implementation of the
widely used iterative reweighted least squares (IRLS)
procedure, allowing the modeling of nonlinear responses.

• We propose a training procedure that involves interleav-
ing the reduction of two loss functions to jointly learn
the mean and the variance.

• We applied the model and the training procedure on a
well-studied risk meta-modeling problem and achieved
similar performance some state-of-the-art uncertainty-
aware models such as MC-Dropout or SDENet. Note that
these are more complex models that are more difficult to
train and often requires auxiliary training data.

II. BACKGROUND

Capturing uncertainty in data and predictions is crucial for
robust neural regression, especially when the training data is



(a) Neural networks can fit data with high homoskedastic (constant
variance) noise relatively well even from small training sample

(b) But with heteroskedastic (non-constant variance) noise present
in data, a neural network with same structure produces wildly
inaccurate results

(c) Our proposed model can fit data with heteroskedastic noise much
more accurately even from an extremely small training set with same
# of parameters.

Fig. 1: Effects of heteroskedastic noise on performance of neu-
ral networks. The solid grey line represents the true function,
the solid green line is the predicted regression line (averaged
over 10 random experiments represented in light green lines).
Only 5% training data was used for fitting the regression line.

small (See Figure 1). There already exists significant amount
of literature in statistics on dealing with uncertainty and
robustness. However, most of these are relevant to simple
linear regressions. For example, Weighted least squares (WLS),
a generalized version of ordinary least squares can be used

to achieve more robust estimates when heteroskedasticity is
present in the data. WLS is a principled approach for achieving
the best linear unbiased estimation where true conditional
variance or noise of data is known [10]. However, the true
conditional variance or noise of data (which can be seen as
“Aleatoric uncertainty”) is generally intractable in real life.
A simple solution called Iterative re-weighted least square
(IRLS) is a time-tested method to estimate this uncertainty in
a linear setting [11]. However, the assumption of linearity in
such statistical methods restrict their usage to identifying linear
dependence only. Real life data can be severely non-linear and
high-dimensional, thus limiting the direct application for such
simple method.

Uncertainty quantification via neural networks is an ac-
tive field of research. The current techniques for measuring
uncertainty either take a bayesian approach (for example,
via imposing prior distributions over model parameters [5])
or ensemble approach (for example, via training multiple
DNNs with different random initializations [6]). A more recent
technique for uncertainty quantification, SDEnet [8], adopts
a dynamic systems approach where the diffusion term of the
stochastic differential equation (modelled as a neural network)
indicates the level of uncertainty inherent in the data. To train
this diffusion network, SDEnet simulates noisy data from a
Gaussian perturbation of the original input data. This diffusion
network uses Brownian motion to encode uncertainty. This
indicates the implicit assumption of Gaussian distribution
of noise. Another recently popular approach for quantifying
uncertainty is the MC-dropout approach [12] which helps to
quantify predictive variance with stochastic dropout layers
in the model. With dropouts, a binary variable for every
parameter in the specified network layer is sampled. The
binary variables can take on the value of 1 with a specified
probability, also known as the dropout rate. The parameter
corresponding to the binary variable is dropped if the binary
variable takes on the value of 0. To derive uncertainty, multiple
stochastic forward passes needs to be used with dropout acti-
vated. The results are then averaged to indicate the predictive
variance or uncertainty of the model. This approach is not
data driven as the modelled uncertainty can depend on the
nature of stochasticity assumed in dropout layers. For example,
deactivating a high proportion of nodes in the dropout layer
may result in high predictive variance regardless of inherent
noise in the data. MC-Dropout is also known to produce over-
confident predictions on unseen examples [6].

III. UNCERTAINTY-AWARE REGRESSION NETWORK

Inspired by the IRLS method for estimating conditional
variance, we propose a neural network that employs two
different fully connected blocks (mean network and variance
network) that attempts to model mean and variance separately
from a shared representation of input data. As shown in
Algorithm 1, the squared residuals achieved from the mean
network helps to fit the variance network. The fitted mean
and variance network is iteratively fitted to optimize weighted
least squares, thus giving us an unbiased estimation of mean



Algorithm 1: Training of uncertainty-aware regression
networks. s is the shared network with fully connected
layers, m and v are respectively mean network and
variance network, Lm, Lv are the mean loss and the
variance loss as defined in Section III.

Initialize s,m, v ;
Set v̂ = 1 ;
for # of epochs do

Forward training data through shared network,
s(X) ;

Forward s(X) through the mean network,
m(s(X)) ;

Estimate mean, ŷ = m(s(X));
Calculate squared residuals Xres = (y − ŷ)2 ;
Update s,m by Lm ;
Estimate variance, v̂ = v(s(X));
Update v by Lv;

end

and also an estimate of squared residuals (variance). The
configuration of the proposed network is illustrated in Figure
2.

A. Shared layers

The shared layers maps the inputs into a continuous mani-
fold, implicitly learning a metric for all inputs. The outputs of
this layer is fed in as the input for mean network and variance
network.

B. Mean network

The mean network is similar to the standard deterministic
NN regression models. It, however, has an augmented loss
function based on weighted least squares. The weights come
from the output of the variance network

Given a training batch B, the loss function used to train the
mean network and shared layers is:

Lm =
∑

(X,y)∈B

(y − ŷ)2

v̂2

=
∑

(X,y)∈B

(y −m(s(X)))
2

v(s(X))2
.

(1)

where m(s(X) is the mean network output and v(s(X) is
the variance network output.

Initially, with the untrained variance network, we set uni-
form v̂ so that the loss function behaves like the regular mean
squared error. But with the trained variance network at later
training steps, we optimize the weighted least squares using
the inverse of estimated variances.

C. Variance network

The variance network uses the latent embedding from the
shared layer and fits a slow changing smooth function for the
variance in heteroskedastic data. The training labels are the

residuals, which is determined by the outputs of the mean
network. The loss function used to train this network is defined
as:

Lv =
∑

(X,y)∈B

(‖y − ŷ‖ − v̂)2

=
∑

(X,y)∈B

(‖y −m(s(X))‖ − v(s(X)))
2
.

(2)

This can be seen as the mean squared error between
the estimated variance and squared residuals from the mean
network.

D. Interleaved training

Our proposed network follows an interleaved training sched-
ule. For each batch of training data, the model first fits the
mean network and shared layers by optimizing Lm from
provided features and targets. In this stage, since the condi-
tional variances are not estimated yet, we assume an uniform
conditional variance for the noise. The parameters of variance
networks are not updated during this stage. After fitting
the mean network, the squared residuals are then calculated
based on mean network’s prediction on each batch. The mean
network and shared layer parameters are frozen after the
initial training and only the variance network is updated to
fit the squared residuals by optimizing mean squared loss
between the variance network output and calculated squared
residuals. The variance network outputs expected squared
residuals which is then fed back into the mean network training
for optimizing the weighted least square loss, Lm for robust
predictions.

IV. EMPIRICAL EVALUATION

To evaluate the performance of our proposed network on
scarce and noisy data, we first create a heteroskedastic 1-
dimensional simulation data. Then we turn our attention to
a real-life data widely used for metamodelling research [13].
We chose this dataset because a major challenge in this domain
is to achieve a highly robust estimate from an extremely small
subset of training samples [14]. Since this problem is exactly
what we try to solve with our proposed method, we believe
that performance in this dataset can be a practical benchmark
for real-life applicability of our proposed regression network.

A. Evaluation of conditional variance estimation

To evaluate whether the proposed network can really fit
heteroskedastic conditional variance with high accuracy, we
simulated a 1D regression dataset (X, y) of 1,000 samples.
Our independent variable vector X ranges from -1 to +1, the
mean function applied over X is as below:

y = 5 + 5x5 sin (x3) + ε. (3)

ε ∼ N (0, v)



Fig. 2: Configuration of the proposed multi-headed uncertainty-aware regression net. Both the mean network and variance
network learns from a shared representation of feature space. The mean networks attempts to fit the true mean function. The
variance network attempts to fit the true variance function from the residuals from mean network.

We can see that the dependent variable y in Equation
3 follows a non-constant Gaussian noise, which has been
modelled by:

v =
5

2
x2. (4)

The conditional variance v in Equation 4 determines the
scale of noise present in the dependent variable. This can
be seen as the inherent scale of noise in the data generation
process. Then to replicate the real life challenge of learning
noise from extremely scarce set of data, we only keep 1%
of samples for training and 99% for testing. Over 10 different
experiments, we randomly choose different set of training sam-
ples (with replacement) and to evaluate overall performance,
average the predictions over these 10 random experiments with
different training sets of data.

As shown in Figure 2, our proposed network contains
a shared fully connected layer. The network contains 100
nodes. The output of the layer works as input for both
mean network and variance network. Both mean and variance
networks themselves contain 2 hidden layer each activated by
the leaky relu activation function. The hidden layers for both
these networks contain respectively 100 and 50 nodes. The
output of the variance network is activated by the Softplus
activation function to achieve non-negative values for variance
estimation.

Our simulated 1D data with known true variance of noise
allows us to evaluate whether our predicted network can
truly capture the conditional variance from data. As shown
in Figure 3, the network can approximate the heteroskedastic
characteristics of the conditional variance function.

B. Evaluation of robust estimation of mean

Now that we have established that our network can estimate
the variance function with high accuracy, we checked whether

Fig. 3: Predicted variance function of our proposed network
on simulation data with known true conditional variance. We
can see that the network can approximate the heteroskedastic
pattern of the conditional variance from a small training
sample.

the estimated variance can be properly used to get a more
robust estimation of the mean. Minimizing the Weighted least
squares should principally give us the best unbiased estimate
of the function under heteroskedastic noise, and we can see
that in Figure 4. We can observe that with knowledge of true
sigma, any neural network could get a robust estimate on
our generated data. Since true sigma is not accessible, our
proposed network uses the estimated variance to achieve the
robust estimates.

C. Performance on benchmark VA data

To evaluate the effectiveness of our proposed network in
real life application of financial risk modelling, we use a
benchmark variable annuity dataset provided by [13]. This
dataset is widely used by metamodelling researchers with the
objective to minimize the percentage error (PE) in portfolio-
level risk estimation with limited available sample due to
expensive financial simulation procedures.

A detailed description of the dataset is given in [13]. Even
though the response variable in the dataset is the monthly
Delta (portfolio risk measure) over a period of 30 years, for



TABLE I: PE Performance on VA dataset across different optimizers

Optimizer SGDM Adagrad

# of parameters † Avg. PE * Std. of PE * # of parameters Avg. PE Std. of PE

Network configuration
Baseline NN 51.4K 0.072 0.041 51.4K 0.071 0.045
MC-Dropout 51.4k 0.073 0.041 51.4K 0.072 0.039

Uncertainty-aware regression net 51k 0.065 0.048 51K 0.067 0.043

Optimizer RMSprop Adam

# of parameters Avg. PE Std. of PE # of parameters Avg. PE Std. of PE

Network configuration
Baseline NN 51.4K 0.069 0.038 51.4K 0.073 0.043
MC-Dropout 51.4K 0.072 0.054 51.4K 0.081 0.040

Uncertainty-aware regression net 51K 0.068 0.046 51K 0.066 0.042
† Total number of learnable parameters in the model.
* Average and standard deviation of PE across 10 different experiments.

(a) If true sigma was known, a neural network optimizing WLS can
fit the heteroskedastic noise properly.

(b) Our proposed model can achieve similar robust estimates with
self-estimated conditional variances

Fig. 4: The variance estimated from our uncertainty-aware
regression net can give robust estimates similar to a neural
network optimizing WLS with knowledge of true variances.
The light green lines are predicted regression lines for indi-
vidual experiments. The darkened green lines is the average
of predicted regression lines over 10 experiments. The blue
line is the true function.

simplicity, we only aim to use the network for estimating the

first month’s Delta.
Generally in metamodelling settings, a clustering (generally

K-prototype clustering) is implemented first to identify the
most representative contracts to reduce the financial simulation
process. Then a regression method (generally Krigging), is
applied on the representative contracts. The fitted regression
model is then used to estimate the full portfolio-level risk
measure. However, in such cases, the performance of the initial
clustering process can highly determine the performance of the
final regression network since the clustering process needs to
ensure that the data sampled is most representative of the full
portfolio. Thus, the accuracy of clustering strongly affects the
out-of-sample performance of any regression network trained
on those samples. This process can be seen as indirectly elim-
inating non-representative or noisy data from training set to
enhance the generalization performance of regular regression
networks.

To eliminate such dependence of clustering techniques from
our experiments, we use a random sampling method instead,
only sampling 1% of training data (380 contracts) to estimate
Delta of the 38,000-contracts VA portfolio.

To adapt to this far more difficult challenge of robust
estimation on the benchmark VA data from 1% training
sample, we use a relatively larger network than previously used
for simulation data. For our experiments on this benchmark
VA data, we increased the number of nodes in our shared
layer to 200. The mean and variance network consists of 200
nodes in each of their 2 hidden layers. We also use a cyclical
learning rate schedule with maximum learning rate of 0.01
and minimum learning rate of 0.001 and 100 steps per cycle.

Also, to ensure that our proposed network can be gen-
eralised across different types of optimisers, we used some
commonly used optimizers (SGD with momentum, AdaGrad,
RMSProp and Adam) for our evaluation.

For metamodelling research, since the main business ob-
jective is to measure portfolio-level risk measure with high
accuracy, percentage error or PE is used as the most common
metric for evaluation of meta-models. The PE can be formu-
lated as:



PE =

∑
ci∈P ŷi −

∑
ci∈P yi∑

ci∈P yi
. (5)

We used this metric to evaluate our model against the base-
line models. To get a better understanding of the consistency
of our model performance, we calculated the average PE and
standard deviation of PE over 10 random experiments on the
VA dataset using different training samples.

Table I shows the results of our model against the baseline
models (a fully connected neural network optimizing mean
squared error and MC-dropout with similar number of pa-
rameters) across all different optimizers with a fixed learning
rate. We can see that across all these different optimizers,
our proposed model consistently provides similar performance
compared to the baseline model with simpler model architec-
ture and training schedule.

V. CONCLUSION

In this paper, we proposed a novel approach towards
estimating uncertainty in a regression data. Our proposed
approach also integrates the estimated uncertainty to provide
more robust estimations from extremely scarce and noisy data.
Our proposed method estimates conditional variance in data
from fitting the squared residuals from the mean network.
The network then optimizes the weighted least squares loss
utilising the inverse of estimated variances as the weights
for minimizing the squared loss. Our network is able to fit
the mean and conditional variance function separately from
the latent representation of input data. We evaluated this
network on our simulated data with heteroskedastic noise and
the benchmark variable annuity dataset. After evaluating our
network with different widely used network, we can conclude
that our network can provide more robust estimates even from
extremely small training samples.

To our knowledge, such direct method of estimating un-
certainty in regression data from squared residuals via neural
network has not been applied before. This extremely simple
and intuitive method can highly benefit real-life application
domains, such as in metamodelling where robust aggregate
estimation is crucial from extremely small and noisy training
samples. Naturally, our next step is to develop the network
to model aleatoric uncertainty and epistemic uncertainty sep-
arately. This would allow us to apply this robust network
in recent active learning setups with acquisition rules that
consider both epistemic and aleatoric uncertainty [15]. In
future we also want to integrate the loss function proposed in
[14] with our proposed network for faster unbiased estimation
of aggregate-level portfolio measures.
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