
Springer Nature 2021 LATEX template

Property Graph Representation Learning for

Node Classification

Shu Li1,2, Nayyar A. Zaidi3, Meijie Du1,2, Zhou
Zhou1,2, Hongfei Zhang1,2 and Gang Li4*

1Institute of Information Engineering, Chinese Academy of
Sciences, Beijing, 100093, China.

2National Engineering Laboratory of Information Security
Technologies, Beijing, 100093, China.

3School of Information Technology, Deakin University, Geelong
VIC, 3216, Australia.

4Centre for Cyber Security Research and Innovation, Deakin
University, Geelong VIC, 3216, Australia.

*Corresponding author(s). E-mail(s): gang.li@deakin.edu.au;
Contributing authors: lishu@iie.ac.cn;

nayyar.zaidi@deakin.edu.au; dumeijie@iie.ac.cn;
zhouzhou@iie.ac.cn; zhanghongfei@iie.ac.cn;

Abstract

Graph representation learning (graph embedding) has led to break-
through results in various machine learning graph-based applications
such as node classification, link prediction and recommendation, etc.
Many real-world graphs can be characterized as the property graphs,
because besides the structure information, there exists rich property
information related to each node in the graphs. Many existing graph
representation learning methods – e.g., random walk-based methods like
DeepWalk and Node2vec, focus only on the structure of graph for learn-
ing the node embedding. Although graph representation learning based
on neural networks (e.g., typical GNN methods such as GraphSAGE) use
the property of nodes as the initial features of nodes and then aggre-
gate feature information of the neighbours, their limitation is that the
neighbourhood of a node is considered to be uniform – i.e., there is no
way to differentiate among neighbours of a node when learning a node
embedding. Additionally, their definition of neighbourhood is local, i.e.,

1

Springer Nature 2021 LATEX template

2 Property Graph Representation Learning for Node Classification

only nodes connected to the current node are considered as neighbours.
Hence those methods fail to capture implicit/latent relationships among
nodes, which are implicit in the given structure. In this study, our aim
is to improve the performance of graph representation learning meth-
ods on property graphs. We present a new framework called Enhanced

Property Graph Embedding (EPGE) – a graph representation learning
framework to address above-mentioned limitations. Our proposed frame-
work relies on the notion of latent neighbourhood, as well as systematic
sampling of neighbouring nodes to obtain better representation of
the nodes. The experimental results on five publicly available graph
datasets demonstrate that EPGE outperforms state-of-the-art baselines
for the task of node classification. We further evaluate the superior-
ity of our proposed formulation by defining a novel quantitative metric
to measure the usefulness of the sampled neighbourhood in the graph.

Keywords: Property Graph, Graph Representation Learning, GraphSAGE,
Biased Sampling, Latent Connection

1 Introduction

Graphs are powerful data structures that allow us to easily express connectiv-
ity (in form of edges) among entities (known as nodes). Real-world graphs are
ubiquitous, e.g., they can be in the form of social networks [1, 2], biological
networks [3, 4], knowledge graphs [5], publication citations networks [2, 6], etc.
There have been many machine learning applications on graphs, e.g., determin-
ing a community a person belongs to on an online social network, classifying
the functional role of a molecule in a biological interaction graph, or predicting
purchase patterns in buyers-products-sellers graphs in online e-commerce plat-
forms, etc. Graph representation learning in machine learning – also known as
graph embedding – has been proposed to encode the structural information of
the graph by constructing an embedding vector for each node in graph as the
node’s representation. In other words, they map any node in the graph to a
low-dimensional Euclidean space. Of course, the goal of graph representation
learning is to optimize this mapping so that geometric relationships in this
learned space reflect the structure of the original graph. Such graph embed-
ding [7, 8] has achieved great successes in machine learning tasks, such as node
classification, link prediction [1, 6, 9, 10].

Graph representation learning involves incorporating structural informa-
tion of the graph. However, in practice, graphs not only contain the structure
information but also contain properties (also called attributes) of nodes. For
example, a publication citation network consists of papers as nodes and citation
relationships as edges. Here, the nodes have properties related to the content
of the papers. Similarly, the social network (such as Twitter) can be repre-
sented by a graph, in which every user is represented by a node with properties

Springer Nature 2021 LATEX template

Property Graph Representation Learning for Node Classification 3

such as user profile, user behaviours, etc. Of course, the follower/followed rela-
tionships among nodes are the structural information depicted with edges. We
call graphs as property graphs, in which other than the structural informa-
tion, there are certain properties associated with each node. In the real-world
network, there are two type of property graphs. One is homophilous graphs
in which most connected nodes are from the same class or with similar prop-
erties, such as citation networks where papers mostly cite research from the
same research area, and social networks where users tend to connect to users
with similar interests. By contrast, graph with heterophily describes the pref-
erence of nodes to connect to nodes not similar to them. Heterophilous graph
often occurs in financial transaction networks where fraudsters often perform
transactions with non-fraudulent users. In dating networks, most connections
are between people of opposite genders and this is also an example of het-
erophilous graph [11]. Note, in our study, we focus on homophilous property
graphs, i.e., edges in graphs tend to connect to similar nodes.

Among the existing work of graph representation learning, Graph Neural

Networks (GNN) are undoubtedly the most effective to model the property
graphs with homophily. Conceptually, the fundamental idea of GNNmodels is to
employ deep artificial neural networks to learn an embedding of each individ-
ual node in the graph by aggregating not only feature information of the node
but as well as its local neighbourhood. For example, Graph Convolutional

Networks (GCN) [6] – an example of GNN, performs convolution on graph by
transforming node representations into the spectral domain using the graph
Fourier transform. GraphSAGE [1] extends GCN from a spectral method to a
spatial one and can efficiently generate node embeddings for previously unseen
data by sampling and aggregating features from a node’s local neighbourhood.
Such GNN have shown remarkable performance in many downstream tasks espe-
cially on graph with good homophily nature [12]. Despite the power of these
GNN methods, they have certain limitations:

• They are likely to be ineffective in aggregating neighbouring information for
nodes that have no or few relations with other nodes in the graph.

• The neighbourhood of a node is defined as the set of all neighbours which
are one or more hops away. We conjecture that there might be nodes which
could be very similar to the node in question but are not in its neigh-
bourhood. Existing methods are not able to aggregate such highly similar
(non-neighbourhood) nodes.

• Spatial-based methods like GraphSAGE [1], sample all neighbours equally
when aggregating their information. It does not consider the fact that
different neighbours may influence the node rather differently.

To address the above limitations, in this paper, we propose a novel
framework named Enhanced Property Graph Embedding (EPGE) – for graph
representation learning in a property graph. EPGE has the following salient
features:

Springer Nature 2021 LATEX template

4 Property Graph Representation Learning for Node Classification

Fig. 1 Illustration of Latent Graph. The original graph is on the left, and we create
a latent graph on the right. Dash lines represent latent connections in which the new
neighbours of the red node are constructed based on the node property similarity.

• To address the first and second challenges described above, apart from the
existing (original) graph, we create a latent graph based on the node prop-
erty information (illustrated in Figure 1). This will help drastically for nodes
with none or few neighbours in the original graph. Moreover, the latent
graph has the ability to capture the important features from distant but
informative nodes.

• To address the third challenge, a bias strategy is applied to sample
neighbours (not only immediate neighbours but latent neighbours) for dif-
ferentiating the influences of the neighbours. We have proposed a sampling
strategy to help choose the most informative neighbours.

Once the neighbours are selected, we aggregate the immediate and latent
neighbourhoods to compute the final node embeddings. We claim that the
final embeddings obtained with EPGE are much more powerful than existing
state-of-the-art methods. Additionally, to back up this claim, a quantitative
evaluation metric is defined to measure the usefulness of sampled neighbour-
hood information. By conducting experiments on five public graph datasets,
we demonstrate the superior performance of EPGE over existing state-of-the-
art baselines. Moreover, we separately validate the efficacy and performance
of the salient features of EPGE by performing detailed ablation studies. We also
discuss how various parameters (e.g., the parameter of latent connection con-
struction, the size of sampling neighbours set, and the number of the edges)
impact the model performance.

Our contributions are summarized as follows:

• We propose a method for property graph representation learning, which not
only exploits the existing graph, but also builds a latent graph. In addition,
it has an effective neighbourhood sampling technique.

• We define a quantitative metric value to measure the usefulness of the sam-
pled neighbourhood, which helps evaluate the superiority of our proposed
method.

Springer Nature 2021 LATEX template

Property Graph Representation Learning for Node Classification 5

• We report an extensive experimental analysis to evaluate the merits of our
proposed algorithms.

The rest of the paper is organized as follows. Section 2 reviews existing
work on graph representation learning. Section 3 provides the preliminaries
followed by Section 4 that presents the proposed method. Section 5 defines a
quantitative index to evaluate and explain the effectiveness of the proposed
EPGE model. We discuss experimental results in Section 6, and conclude with
our contributions and future work in Section 7.

2 Related Work

A growing body of literature has been devoted to graph representation
learning. In the following, let us discuss a few prominent lines of direction.

2.1 Random Walk-based Methods

Random walk-based methods are one of the early approaches to graph rep-
resentation learning that approximate various characteristics such as node
centrality [13] and similarity [14] of the graph.

Two prominent examples of graph embedding techniques based on ran-
dom walk are DeepWalk [15] and Node2vec [16]. DeepWalk [15] proposed to
use a skip-gram model to learn node embeddings by constructing the rela-
tionships among nodes based on paths obtained from random walks. It was
found statistically that the frequency that nodes appear in the short random
walks will follow a power-law distribution as the word frequency in natural
language. Therefore, language modeling can be applied to graph representa-
tion learning. DeepWalk presented a generalization of language modeling to
explore the graph through a stream of short random walks. These walks can
be thought of as short sentences and nodes in walks are analogous to words
in sentences. Node2vec [16] utilized biased random walks by reaching a trade-
off between breadth-first and depth-first graph search. Specifically, Node2vec
introduced two hyper-parameters ρ and q to control the breadth-first search
and depth-first search in the random walk, respectively. Grid search is used to
seek the optimal hyper-parameters for network representation learning. There-
fore, Node2vec can not only obtain local topology information of the node but
also explore deeper structural information, thereby improving the effectiveness
of network representation learning. Walklets [17] modified the random walk
strategy in DeepWalk. By skipping over steps in each random walk, Walklets
generated a corpus of node pairs that are reachable via paths of a fixed length.
This corpus can then be used to learn a series of latent representations, each
of which captures successively higher-order relationships from the adjacency
matrix. By this random walk strategy, Walklets can capture the relationship
among nodes with a larger spatial scale. HARP [18] utilized a graph coarsening
procedure to collapse related nodes in the graph together into super nodes.
This coarsened graph was used to learn a set of initial representations, and the

Springer Nature 2021 LATEX template

6 Property Graph Representation Learning for Node Classification

learned embedding of each super node was used as an initial value for the ran-
dom walk embeddings of the super node’s constituent nodes. The process can
repeat in a hierarchical manner at varying levels of coarseness. In [7], it was
shown that random walks-based methods are inefficient for processing large
graphs, because the node embeddings are independent and there is no shar-
ing of parameters. In addition, only the structure information of the graph is
learned and the properties of nodes are not taken into consideration in such
models.

2.2 Graph Neural Networks

Growing research in deep learning over the past few years has led to a deluge
of deep neural networks based methods applied to graphs [1, 6, 19], leading to
a formulation known as the Graph Neural Networks (GNN). Unlike random
walk-based methods, GNN encode nodes into vectors by aggregating feature
information from node’s local neighbourhood via neural networks.

Several researchers have attempted to define convolutions operators on
graph to learn graph presentation. Graph convolutions can often be categorized
as spectral approaches and spatial approaches. Spectral approaches perform
convolution by transforming node representations into the spectral domain
using the graph Fourier transform or its extensions. [20] first introduced con-
volution for graph data from the spectral domain using the graph Laplacian
matrix, and used a learnable diagonal matrix as the filter. However, this
operation in [20] is computationally inefficient and the filter is non-spatially
localized. To solve this efficiency problem, [21] proposed the ChebNet and
improved the spectral-based approach by using a polynomial filter. [6] fur-
ther simplified the filtering by using only the first-order neighbours. Spatial
approaches perform convolutions directly on the graph based on the graph
topology. The major challenge of spatial approaches is defining the convolution
operation with differently sized neighborhoods. [22] proposed a spatial method
that used different weight matrices for nodes with different degrees, but it
may not be scalable to large scale graphs with more node degrees. [23] used
transition matrices to define the neighborhood for nodes. [24] defined a “recep-
tive field” for each node by selecting a fixed number of nodes from its k-step
neighborhoods, and adopted a standard 1-D CNN with proper normalization
to learn grap embedding.

Many techniques have been introduced to further improve GNN, especially
in spatial approaches, and some of these methods are general. Inspired by
the attention mechanism, [10] incorporated the attention mechanism into
GNN so that the node neighborhoods are aggregated with different weights.
Some methods added “skip connections” to make GNN models deeper. In [2],
researchers explored an architecture that learned to selectively exploit infor-
mation from neighborhood of differing locality. They proposed the Jumping

Knowledge Networks that selectively combines different aggregations at the
last layer, i.e. the node representations of each layer directly “jumps” to the last
layer. This network learned the representations of different orders for different

Springer Nature 2021 LATEX template

Property Graph Representation Learning for Node Classification 7

graph substructures, hence the trained model can improve the representations,
in particular for graphs with sub-graphs of diverse local structures. In the
area of computer vision, a convolutional layer is usually followed by a pool-
ing layer to get more general features. Similar to these pooling layers, some
research focuses on designing hierarchical pooling layers on graphs. H-GCN [25]
repeatedly aggregated nodes with similar structures to form some hyper-nodes,
followed by refining the coarsened graph to the original with an aim to restore
the representation for each node. Instead of merely aggregating one or two-
hop neighbourhood information, the proposed coarsening procedure enlarged
the receptive field for each node, hence more global information can be cap-
tured. GNN models aggregate messages for each node from its neighborhood.
Intuitively, if multiple GNN layers are implemented, the size of neighbours will
grow exponentially with the depth. Therefore, a sampling technique is adopted
to alleviate this “neighbour explosion” issue. GraphSAGE [1] was able to effi-
ciently generate node embeddings for previously unseen data by sampling and
aggregating features from a node’s local neighbourhood. GraphSAGE [1] does
not utilize the full set of neighbours but a fixed-size set of neighbours by uni-
formly sampling. Our method is based on GraphSAGE, and proposes an effective
neighbour sampling technique.

In addition to the above techniques in GNN, recent researchers have
attempted to build GNN by designing and optimizing the network architecture.
DAGNN [26] proposed a deep adaptive graph neural network to learn node rep-
resentations from larger receptive fields. N-GCN [27] trained multiple instances
of GCN over node pairs discovered at different distances in random walks, and
learned a combination of the instance outputs. In fact, our proposed method
can also obtain larger receptive fields by introducing the latent neighbours
that are similar but are far away from each other.

More recent attention has been focused on GNN models on graphs with het-
erophily, where most connected nodes are from different classes. [28] proposed
a framework called CPGNN that incorporated an interpretable compatibility
matrix for modelling the heterophily or homophily level in the graph, enabling
it to go beyond the assumption of strong homophily. [12] designed a prop-
agation mechanism, which can automatically change the propagation and
aggregation process according to homophily or heterophily between node pairs.
By introducing two measurements of homophily degree, this model can adap-
tively learn the propagation process. [29] proposed a GNN model based on a
bi-kernel feature transformation and a selection gate. Two kernels capture
homophily and heterophily information respectively, and the gate is intro-
duced to select which kernel is used for the given node pairs. [11] declared
that the most significant drawback of the standard datasets used for evaluat-
ing heterophily-specific models is the presence of a large number of duplicate
nodes in the datasets, leading to train-test data leakage and making results
obtained by using these datasets unreliable. [11] showed that standard GNN

achieved strong results on heterophilous graphs, almost always outperforming
specialized models. Compared with these studies that automatically learn the

Springer Nature 2021 LATEX template

8 Property Graph Representation Learning for Node Classification

homophily or heterophily between node pairs to improve the performance of
standard GNN models under heterophily, our proposed framework EPGE focus
on homophilous graphs that aims to capture the similarities not only from
the local neighbours but also the explicit, i.e., latent node to enhance node
representation to the maximum extent.

3 Preliminaries

Let us discuss some preliminaries in this section.

3.1 Graph Definition

Let G = (V, E) represents an undirected graph with N nodes and their con-
nection edges. We have a set of nodes – vi ∈ V, and edges (vi, vj) ∈ E . The
features of nodes are denoted as Z = {z1, ..., zN} ∈ RN×F where F denotes
the size of the feature vector. For any node vi ∈ V, N (v) is the set of nodes
that are in the neighbourhood of node v based on E .

3.2 Graph Representation Learning

By definition, graph representation learning (graph embedding) is an approach
that learns a mapping from high-dimensional sparse graphs into low-
dimensional, dense and continuous vector spaces, while maximally preserving
the graph structure properties. Graph embedding has been used in the
literature in two ways [4]:

• Graph Embedding encodes each node of a graph with its own vector
representations with a smaller dimension, with the following definition:

Definition 1 (Graph Embedding) Given a graph G = (V, E), having nodes V and
their connecting edges E . Graph Embedding is a mapping f : vi ∈ V → yi ∈ Rd,
such that d ≪ |V| and the function f preserves some proximity measure, like node
similarity in the original graph G.

• Whole-graph Embedding is to represent the whole graph in the form of
latent vectors, and defined as:

Definition 2 (Whole-graph Embedding) Given a set of graphs G = {G1, ...,Gm},
whole-graph embedding is a mapping f : Gi → yi ∈ Rd, such that the function f
preserves some proximity measure defined on graph G.

In this study, we use the former definition. As thus, an embedding maps
each node to a low-dimensional feature vector, and such generated nonlinear
and highly informative graph embeddings can be conveniently used to address
the node classification task.

Springer Nature 2021 LATEX template

Property Graph Representation Learning for Node Classification 9

Fig. 2 Aggregators in the GraphSAGE.

3.3 GraphSAGE

As we discussed earlier, GraphSAGE [1] is an improvement over the original
GCN model. GCN is trained independently for a fixed graph and requires full
graph Laplacian, so it is inherently transductive learning. GraphSAGE replaces
the full graph Laplacian with learnable aggregation functions which are key to
performing message passing, and it is a general inductive learning framework
that can efficiently generate the embedding of unknown nodes by using the
feature information of nodes. Such ability for inductive learning is important
for processing large-scale graphs, leading to strong generalization performance
to unseen nodes.

The core idea of GraphSAGE is to generate embeddings of the target node
by learning an aggregator function that samples and aggregates features from
a node’s local neighbourhood, as shown in Figure 2. The sampling strategy
used in GraphSAGE is to uniformly sample a fixed-size set of neighbours and
sample with replacement in case where the sample size is larger than the node’s
degree. Five candidate aggregator functions are used namely

1. MEAN aggregator,
2. GCN aggregator,
3. LSTM aggregator,
4. MeanPooling aggregator, and
5. MaxPooling aggregator.

Let us discuss these five aggregators at k-th depth in the following.
MEAN aggregator is defined as:

hk
N (v) ← MEAN

(
{hk−1

u ,∀u ∈ N (v)}
)
;

hk
v ← σ

(
W · CONCAT(hk−1

v ,hk
N (v))

)
.

(1)

Springer Nature 2021 LATEX template

10 Property Graph Representation Learning for Node Classification

N (v) is the immediate neighbourhood set of node v. h denotes a node’s
representation at this step. MEAN is the mean operator, where the element-
wise mean of the vectors hk

N (v) is taken. The immediate neighbourhood is

aggregated into a single vector hk
N (v), and GraphSAGE then concatenates this

aggregated neighborhood vector with the node’s current representation hk−1
v .

W denotes the weight matrix, and σ is a non-linear activation function.
On the other hand, GCN aggregator is defined as:

hk
v ← σ

(
W ·MEAN({hk−1

v } ∪ {hk−1
u ,∀u ∈ N (v)}

)
, (2)

where ∪ is the union operation.
LSTM aggregator replaces the MEAN operation in Equation 1 as:

hk
N (v) ← LSTM

(
{hk−1

u ,∀u ∈ π(N (v))}
)
, (3)

where LSTM (Long Short-term Memory) is a special Recurrent Neural

Network to process inputs in a sequential manner. π(·) is a random permuta-
tion operation.

MeanPooling aggregator replaces the MEAN operation in Equation 1 as:

hk
N (v) ← MEAN

(
{σ(Wpoolh

k−1
ui

+ b),∀ui ∈ N (v)}
)
. (4)

Here, Wpool is the weight matrix of a fully-connected layer in this pooling
aggregator.

Finally, MaxPooling aggregator replaces the MEAN operation in
Equation 1 as:

hk
N (v) ← MAX

(
{σ(Wpoolh

k−1
ui

+ b),∀ui ∈ N (v)}
)
. (5)

GraphSAGE aims at learning an aggregator instead of learning a represen-
tation for each node. This idea can improve the flexibility and generalization
ability of the model. In addition, thanks to its flexibility, it can train the
model in batches to improve the convergence speed. It is important to note
that, GraphSAGE consistently outperforms state-of-the-art baselines in GNN [1].
Although GraphSAGE and other existing neighbourhood aggregation methods
have achieved good performance on graph representation learning, they are
not able to aggregate nodes that are similar but are far away from each other.
Moreover, these methods overlook the fact that different nodes in the neigh-
bourhood may have different influences on the node. We will address these
issues with our proposed EPGE method, and further improve the performance
of GraphSAGE in this study.

Springer Nature 2021 LATEX template

Property Graph Representation Learning for Node Classification 11

Fig. 3 Pictorial illustration of the of EPGE framework.

3.4 Existing and Latent Graphs

We define Existing Graph as:

Definition 3 (Existing Graph) An existing graph is a graph that can be cre-
ated based on original connections between entities, and is parametrized as: Ge =
(V, EGe ,P), where V are the nodes, EGe correspond to their relationships, and P
denotes the properties of nodes.

The existing graph defined above is fundamental to describe the relation-
ship of the nodes, in which the node representation can be efficiently improved
by aggregating features from its neighbours. However, it is unable to capture
the long-distance dependencies between nodes with similar properties when
they are far away in the existing graph. In order to address this issue, we
define Latent Graph as:

Definition 4 (Latent Graph) A latent graph is parametrized as: Gl =
(V, EGl ,P, λGl) with nodes V and links EGl , where the link between two nodes u, v ∈ V
exists if the similarity between the nodes exceeds a certain pre-defined threshold λGl .
P represents the property of nodes as the same meaning in the Ge.

It can be seen that edges in the latent graph depend on the similarity
between nodes and are dominated by a pre-defined threshold. Of course, one
can control the number of edges by changing this threshold.

4 Methodology

Let us discuss our proposed EPGE framework in this section. We will start by
discussing the framework, followed by our discussion of latent graph construc-
tion. Later, we will discuss various features of our proposed formulation.

4.1 EPGE Framework

Our proposed framework is illustrated in Figure 3 which depicts various steps
in our formulation. First, the existing graph Ge is obtained along with the
property vector of nodes. Second, two nodes are similar if the similarity of their
property vectors exceeds a pre-defined threshold λGl , leading to a latent edge

Springer Nature 2021 LATEX template

12 Property Graph Representation Learning for Node Classification

between the two nodes. These latent edges and the corresponding nodes form
the latent graph Gl. Third, a biased neighbourhood sampling strategy is imple-
mented. Neighbours that are more similar to the node have higher priority to
be aggregated until a fixed-size set of neighbours is obtained. Note, in this step,
the neighbourhood contains the immediate neighbours in the existing graph
and the latent neighbours in the latent graph. Finally, a node embedding xv

is obtained by aggregating the property vectors of the neighbours and itself.

4.1.1 Latent Graph Construction

Let us discuss the creation of the latent graph. For the existing property graph
Ge, we have, nodes vi ∈ V and edges (vi, vj) ∈ EGe . The property vector
representation of node v ∈ V is denoted as zv

1. For v, u ∈ V, their similarity
and the latent edge are defined as:

S(v, u) = PearsonSimilarity(zv, zu);

EGl(u, v) =

{
1, if S(u, v) ≥ λGl

0, otherwise.

(6)

Here S(u, v) denotes the similarity between two nodes – if it exceeds the thresh-
old λGl , these two nodes are linked by a latent edge, which finally creates a
latent graph Gl. One can use any form of similarity measure such as: Pearson,
Spearman, dot product, etc. Here, we adopt Pearson as the default mea-
sure as it works the best in practice. Importantly, we analyse the effect of the
parameter λGl setting for the model performance in Section 6.7.1.

4.1.2 Bias Sampling Neighborhood

Many real-world graphs have high-degree nodes, i.e., nodes with a large number
of neighbours. Considering all neighbours for aggregation is usually inefficient
and unnecessary [30]. Given that a node’s neighbours in a graph have no
natural ordering, though they do in sentences, images, etc., GraphSAGE [1] uni-
formly samples a fixed-size set of neighbours. It has been demonstrated that
aggregating neighbour information is effective in graph representation learn-
ing [1]. However, not all neighbours of a node can provide positive information.
Therefore, our proposed framework EPGE improves GraphSAGE by deriving a
set of sampled neighbours based on their similarity. The intuition is that sim-
ilar neighbours (similar in any type of property) can consolidate and enhance
the node embedding results. In other words, in EPGE model, neighbours that
are more similar to the node being processed have higher priority to be aggre-
gated. We will discuss how to evaluate the benefit of this strategy in Section 5
and provide the experimental analysis in Section 6.8.

1Note, the properties of nodes depend on specific scenarios. For example, the properties of
nodes in a publication citation network include titles, authors, year of publication, the content of
the papers, etc. For another instance, the properties of user nodes in a social network constitute
user’s profile, user’s behaviours, user’s posts and so on.

Springer Nature 2021 LATEX template

Property Graph Representation Learning for Node Classification 13

4.1.3 Multi-modality Neighbourhood Aggregation

The neighbourhood N (v) =
{
Ne(v),Nl(v)

}
of node v includes its neigh-

bourhoods in both the existing graph and the latent graph. The existing-
neighbourhood Ne(v) consists of the set of v’s adjacent nodes in the existing
graph Ge, and the latent-neighbourhood Nl(v) are those whose similarity
to node v is higher than a parameter λGl . We regard these two types of
neighbourhood as multi-modality neighbourhood and discuss the fusion of
multi-modality neighbourhood in this section. During the process of aggrega-
tion, we combine the existing neighbourhood and the latent neighbourhood
to generate the node embeddings. The motivation is that different types of
neighbours will make different contributions to the final node representations.
For the existing-neighbourhood, it denotes the effect of user’s original nature.
In comparison to this easily presented relationship, the latent-neighbourhood
indicates the long-range dependencies with the node, which is invisible and
cannot be captured directly. Here, we have two approaches to aggregating the
existing neighbourhood and the latent neighbourhood. One is to treat these
two modalities of neighbourhood equally and sample the neighbours com-
pletely according to the similarity with the node in problem. Another approach
is that the existing neighbourhood is given priority to be sampled, while the
latent neighbourhood is regarded as a supplement until a fixed-size set of
neighbours is obtained. In the experiment part, we adopt the later approach.

4.2 The Algorithm of EPGE

Algorithm 1 describes the overall procedure of our proposed EPGE framework.
From step 3 to 9, the similarity of nodes is calculated, and the latent neigh-
bours are constructed based on similarity. In step 11, when the size of the
existing neighbourhood is less than β (the predetermined size of neighbours to
be sampled), we select β − |Ne(v)| neighbours from the latent neighbours as
supplement. The latent neighbours are sorted to obtain the neighbours with
the highest similarity. Next, for each node v ∈ V, it aggregates the representa-
tions of its sampled neighbourhood, {hk−1

u ,∀u ∈ N s(v)}, represented in step
15. Here, AGGREGATOR is one of the five candidate aggregator functions
introduced in Section 3.3. Then we use CONCAT operation to concatenate
the node’s sampled neighbourhood hk

N s(v) and its current representation hk−1
v

(Step 16). This concatenated vector is fed through a fully connected layer with
a non-linear activation function σ. In this process, we can adopt the five aggre-
gators described in Section 3.3. Finally, we get the final representations output
at depth K, denoted as xv ← hK

v ,∀v ∈ V (Step 21). According to the learned
nodes representation, the classification task of graph nodes can be conducted.

4.3 Model Training

In this study, we take node classification in a supervised setting as the spe-
cific downstream task. The cross-entropy is applied as the loss function of

Springer Nature 2021 LATEX template

14 Property Graph Representation Learning for Node Classification

Algorithm 1 The EPGE Algorithm

Input: Graph G = (V, E ,P);
Property features {zv,∀v ∈ V};
Depth K;
Weight matrices Wk,∀k ∈ {1...,K};
Non-linearity σ;
The immediate neighborhood Ne(v);
The latent neighborhood Nl(v);
All neighborhood N (v);
The sampled neighbourhood N s(v), the size |N s(v)|;
The size of neighbours to be sampled β;
The threshold parameter of latent connection construction λGl ;

Output: Vector representations xv for all v ∈ V;
1: h0

v ← zv,∀v ∈ V;
2:

3: for v ∈ V do
4: for u ∈ V do
5: if S(v, u) ≥ λGl using Equation 6 then
6: Nl(v)← u ;
7: end if
8: end for
9: end for

10:

11: N s(v)←
{
Ne(v) ∪ Sort(Nl(v), β − |Ne(v)|)

}
;

12:

13: for {k = 1...K} do
14: for v ∈ V do
15: hk

N s(v) ← AGGREGATORk

(
{hk−1

u ,∀u ∈ N s(v)}
)
;

16: hk
v ← σ

(
Wk· CONCAT (hk−1

v ,hk
N s(v))

)
;

17: end for
18: hk

v ← hk
v/h

k
v2,∀v ∈ V ;

19: end for
20:

21: xv ← hK
v ,∀v ∈ V;

the model. With the labelled nodes, we train EPGE by minimizing the cross
entropy via back-propagation and gradient descent. Thus, the loss function is
calculated as:

L =
∑
v∈V

(
yvlog pv + (1− yv) log(1− pv)

)
, (7)

where pv = σ(wTxv + b).

Springer Nature 2021 LATEX template

Property Graph Representation Learning for Node Classification 15

This cross-entropy loss function compares the prediction results of the model
with the real labels of the data in the classification task. Here, xv is the
final node representation of the node v obtained from Algorithm 1, pv is the
predicted probability of node v, and yv is the ground truth.

5 Label Consistency Metric

GNN models obtain the node representation by collecting information from
the neighbourhood. However, in practice, not all neighbours of a node con-
tain relevant information, which means that some neighbours may convey
positive information to the node and some neighbours may provide negative
disturbance. For the node classification task, it is reasonable to consider that
neighbours with the same class label of the target node can contribute posi-
tive information. In our proposed EPGE framework, based on GraphSAGE, we
improve the performance by introducing the latent neighbourhood and adopt-
ing the biased sampling strategy. The purpose of adopting these two strategies
is to choose neighbourhood which is helpful to node representation. In order to
interpret why our proposed method can better select neighbourhood and thus
achieve better performance, we introduce a metric named label consistency,
which quantitatively measures the usefulness of the sampled neighbourhood
information.

Consider the node classification task where each node v ∈ V has a label yv,
we say vi ≃ vj if yvi = yvj . Then we define the label consistency metric as:

τ =
∑

evi,vj∈N s
(v)

(
I(vi ≃ vj)/|N s(v)|

)
, (8)

where I(vi ≃ vj) is an indicator function, representing the count of vi ≃ vj .
N s(v) is the sampled neighbourhood. A larger τ implies that neighbours with
the same labels tend to be sampled, in which case the surrounding contributes
more positive information for the node representation. Therefore, the larger
the τ , the better the sampled neighbours for node representation learning.
In the Section 6.8, we calculate this metric of EPGE and GraphSAGE on the
experimental datasets, which explains, to some extent, the superiority of the
proposed framework EPGE than GraphSAGE.

6 Experiment and Analysis

6.1 Datasets

We evaluate our proposed method on five public datasets, which are widely
used for GNN node classification. The statistics of these datasets are summarized
in Table 1. The details of these datasets are as follows:

• Cora [31] is citation network dataset consisting of machine learning papers
as nodes and the citation relationships as edges. Those papers generate a
vocabulary of 1433 unique words after stemming and removing stop-words.

Springer Nature 2021 LATEX template

16 Property Graph Representation Learning for Node Classification

Table 1 Statistic of Datasets.

Dataset Task Classes Nodes Edges Features

Cora multi-class 7 2,708 5,278 1,433
CiteSeer multi-class 6 3,312 4,536 3,703
PubMed multi-class 3 19,717 44,338 500

PPI multi-label 121 14,755 222,109 50
HateUser multi-class 2 4,971 9,620 320

Each paper is represented with binary values indicating whether each word
in the vocabulary is present (indicated by 1) or absent (indicated by 0) in
the paper.

• CiteSeer [31] is another citation network dataset, in which documents and
citations are treated as nodes and edges. CiteSeer papers generate a vocab-
ulary of 3703 unique words. The same as Cora Dataset, the property vectors
of nodes are presented by these words.

• PubMed [32] is a citation network from the PubMed database, which contains
a set of articles (nodes) related to diabetes and the citation relationships
(edges) among them. The node properties are TF-IDF representation for the
article, and the node labels are the diabetes type addressed in the articles.

• PPI [1] is a biological graph of Protein-Protein Interactions (predicting
protein functions). The node’s properties include positional gene set, motif
set and immunological features.

• HateUser contains a network of 100k users, among them about 5k were
annotated to be either hateful or not. If one user has retweeted the post of
another user, such a retweet connection is represented as the edge in this
dataset. The properties of users could be content-related, activity-related,
sentiment-related, etc.

6.2 Baselines

We compare our proposed model with ten baselines of graph representation
learning. DeepWalk [15] and Node2vec [16] are the representatives of random
walk based methods for graph representation learning. The recent models
of graph convolutional networks include GCN [6], GAT [19], JK-LSTM [2],
H-GCN [25], N-GCN [27], DAGNN [26], and Geom-GCN [33]. GraphSAGE is the
state-of-the-art based on neighbour aggregation. As our proposed model EPGE
mainly makes improvement based on GraphSAGE, we conduct a more detailed
comparative analysis between EPGE and GraphSAGE. Let us discuss the details
of baseline approaches in the following:

• DeepWalk [15] – A skip-gram model to learn node embeddings by capturing
the relationships between nodes based on random walk paths.

• Node2vec [16] – A method considers both graph homophily and structural
equivalence by combining breadth-first random walk and depth-first random
walk.

https://www.kaggle.com/manoelribeiro/hateful-users-on-twitter

Springer Nature 2021 LATEX template

Property Graph Representation Learning for Node Classification 17

• GCN [6] – A scalable implementation of GCN via a localized first-order
approximation of spectral graph convolutions.

• GAT [19] – A graph neural network architectures that assigns different impor-
tance to different neighbours by utilising self-attention mechanism, and then
combines their impacts to generate node embeddings.

• JK-LSTM [2] – This model proposed the Jumping Knowledge Networks that
selectively combine different aggregations at the last layer.

• H-GCN [25] – This work designed a graph coarsening layer to aggregate nodes
with similar structures to hyper-nodes for enlarging the receptive field for
each node and improving the performance.

• N-GCN [27] – This method trained multiple instances of GCN over node pairs
discovered at different distances in random walks, and learned a combination
of the instance outputs.

• DAGNN [26] – A deep adaptive graph neural network is presented by decou-
pling the representation transformation and propagation operations, which
can ease the over-smoothing issue.

• Geom-GCN [33] – This scheme first maps a graph to a continuous latent space
via node embedding, and then use the geometric relationships defined in
the latent space to build structural neighborhoods for aggregation, and then
design a bi-level aggregator operating on the structural neighborhoods to
update the feature representations of nodes in graph neural networks.

• GraphSAGE [1] – GraphSAGE sampled and aggregated features from a
node’s local neighbourhood, instead of training individual embeddings
for each node. GraphSAGE reported the experimental results of four
aggregators, namely GraphSAGE-GCN, GraphSAGE-MEAN, GraphSAGE-LSTM,
and GraphSAGE-MaxPooling.

6.3 Experiment Setup

We implement our method using TensorFlow. We have used a standard setup
that has been used in the evaluation of other models. To evaluate the perfor-
mances, we split the datasets into the training set, validation set, and testing
set with the approximate proportion of 60%, 20%, and 20%, respectively. We
use the validation set for hyper-parameter tuning and early stopping and the
test set only to report the performance. Throughout all the experiments, we
use the Adam optimizer with the learning rate as 0.001 and dropout rate as
0.2. The threshold λGl of latent connection construction is set to 0.5 as the
default. We report F1-micro and F1-macro on the test set of each dataset to
evaluate the performance of node classification in the property graphs.

6.4 Code

The code of this work can be downloaded from: https://anonymous.4open.
science/r/EPGE-open-code-4C05.

https://anonymous.4open.science/r/EPGE-open-code-4C05
https://anonymous.4open.science/r/EPGE-open-code-4C05

Springer Nature 2021 LATEX template

18 Property Graph Representation Learning for Node Classification

Table 2 Comparison of EPGE with Baselines.

Method

F1-micro(%) Dataset
Cora CiteSeer PubMed PPI HateUser

Publicly Available Implementation of Existing Methods

DeepWalk 67.20 43.20 65.30 60.66 -
Node2vec 74.90 54.70 75.30 61.98 -

GCN 81.50 70.30 79.00 - -
GAT 83.22 72.50 79.00 - -

GraphSAGE-GCN - - - 50.00 -
GraphSAGE-MEAN - - - 59.80 -
GraphSAGE-LSTM - - - 61.20 -

GraphSAGE-MaxPooling - - - 60.00 -
JK-LSTM 85.80 74.70 - - -
H-GCN 84.50 72.80 79.80 - -
N-GCN 83.00 72.20 79.50 46.80 -
DAGNN 84.40 73.30 80.50 - -

Geom-GCN 84.93 75.14 88.09 - -

Our Proposed Methods

EPGE-MEAN 85.80 74.60 88.43 65.00 94.20
EPGE-GCN 85.00 74.00 84.50 60.00 92.60
EPGE-LSTM 86.60 75.80 88.43 76.00 92.00

EPGE-MeanPooling 84.60 75.00 87.60 83.00 92.80
EPGE-MaxPooling 85.00 74.00 86.97 85.00 92.80

6.5 Results of Node Classification

In this section, we will compare EPGE with several competing algorithms, and
perform a more detailed comparative analysis between EPGE and GraphSAGE.

6.5.1 Comparison with Baselines

We first report node classification accuracy results compared with baselines
in Table 2. To ensure a fair comparison, we use the results reported in their
respective papers. Therefore, some results are missing because they have not
been applied to this collection of datasets. Note, it is common in graph embed-
ding research to use the results on standard datasets, published in original
papers, given the experimental setup is consistent across various papers.

From Table 2, we can see that EPGE achieves higher F1-micro scores than all
the other methods for all datasets, especially on PubMed and PPI for which per-
formance improvements are significant. The methods that use node property
information (i.e., EPGE, GraphSAGE and GCN) achieve better performance than
the methods that use the skip-gram model to capture the structure relation-
ships (i.e., DeepWalk and node2vec). In addition, compared with GraphSAGE

and GCN-related models (e.g., H-GCN, N-GCN), EPGE further improves the accu-
racy of node classification, which highlights the effectiveness of our proposed
EPGE framework.

6.5.2 Comparison with GraphSAGE

Since our model is conceptually aligned with GraphSAGE, it is necessary to com-
pare with GraphSAGE. To do this, we implement EPGE and GraphSAGE with five

Springer Nature 2021 LATEX template

Property Graph Representation Learning for Node Classification 19

T
a
b
le

3
C
o
m
p
a
ri
so
n
o
f
E
P
G
E
w
it
h
G
r
a
p
h
S
A
G
E
.

M
o
d
e
ls

C
o
ra

C
it
eS

ee
r

P
u
b
M
ed

P
P
I

H
a
te
U
se
r

F
1
-m

ic
ro
(%

)
F
1
-m

a
cr
o
(%

)
F
1
-m

ic
ro
(%

)
F
1
-m

a
cr
o
(%

)
F
1
-m

ic
ro
(%

)
F
1
-m

a
cr
o
(%

)
F
1
-m

ic
ro
(%

)
F
1
-m

a
cr
o
(%

)
F
1
-m

ic
ro
(%

)
F
1
-m

a
cr
o
(%

)

O
u
r
Im

p
le
m
e
n
ta

ti
o
n

o
f
G
ra

p
h
S
A
G
E

G
ra
p
h
S
A
G
E
-M

E
A
N

8
5
.2
0

8
4
.9
2

7
3
.0
0

5
6
.6
3

8
7
.4
0

8
7
.2
6

5
5
.0
0

3
5
.6
8

9
2
.0
0

7
5
.0
8

G
ra
p
h
S
A
G
E
-G

C
N

8
4
.0
0

8
3
.0
1

7
1
.2
0

5
4
.4
6

8
2
.1
3

8
1
.6
8

4
8
.0
0

2
4
.8
8

9
0
.4
0

6
8
.8
1

G
ra
p
h
S
A
G
E
-L
S
T
M

8
4
.0
0

8
3
.4
8

7
2
.2
0

5
7
.6
0

8
7
.8
3

8
7
.7
7

6
9
.0
0

5
9
.2
0

8
8
.6
0

6
8
.6
1

G
ra
p
h
S
A
G
E
-M

ea
n
P
o
o
li
n
g

8
5
.4
0

8
4
.4
1

7
4
.4
0

5
8
.4
8

8
5
.9
7

8
6
.0
5

6
6
.0
0

5
5
.2
5

9
0
.0
0

7
4
.8
6

G
ra
p
h
S
A
G
E
-M

a
x
P
o
o
li
n
g

8
5
.4
0

8
4
.1
0

7
2
.6
0

5
7
.5
4

8
6
.9
3

8
6
.7
4

6
6
.0
0

5
6
.1
8

6
7
.0
0

5
5
.6
4

O
u
r
P
ro

p
o
se

d
M

e
th

o
d
s

E
P
G
E
-M

E
A
N

8
5
.8
0

8
6
.5
4

7
4
.6
0

5
9
.8
4

8
8
.4
3

8
8
.3
7

6
5
.0
0

5
2
.9
7

9
4
.2
0

8
1
.3
6

E
P
G
E
-G

C
N

8
5
.0
0

8
5
.3
8

7
4
.0
0

5
8
.0
8

8
4
.5
0

8
4
.1
3

6
0
.0
0

4
3
.6
0

9
2
.6
0

7
4
.1
7

E
P
G
E
-L
S
T
M

8
6
.6
0

8
6
.8
9

7
5
.8
0

6
0
.0
5

8
8
.4
3

8
8
.3
3

7
6
.0
0

7
1
.0
2

9
2
.0
0

7
5
.0
8

E
P
G
E
-M

ea
n
P
o
o
li
n
g

8
4
.6
0

8
4
.5
8

7
5
.0
0

5
9
.5
9

8
7
.6
0

8
7
.6
4

8
3
.0
0

7
8
.6
6

9
2
.8
0

8
0
.3
5

E
P
G
E
-M

a
x
P
o
o
li
n
g

8
5
.0
0

8
4
.8
5

7
4
.0
0

5
9
.3
2

8
6
.9
7

8
6
.9
8

8
5
.0
0

8
1
.5
4

9
2
.8
0

7
8
.8
6

Springer Nature 2021 LATEX template

20 Property Graph Representation Learning for Node Classification

Table 4 The Results of Ablation Study.

Method

F1-micro(%) Dataset
Cora CiteSeer PubMed PPI HateUser

EPGE-MEAN 85.80 74.60 88.43 65.00 94.20
EPGE-MEAN\L 86.00(↑ 0.20) 75.40(↑ 0.80) 87.33(↓ 1.10) 69.00(↑ 4.00) 91.40(↓ 2.80)

EPGE-MEAN\B 84.60(↓ 1.20) 71.80(↓ 2.80) 87.20(↓ 1.23) 56.00(↓ 9.00) 90.00(↓ 4.20)

EPGE-GCN 85.00 74.00 84.50 60.00 92.60
EPGE-GCN\L 84.60(↓ 0.40) 74.80(↑ 0.80) 82.93(↓ 1.57) 65.00 (↑ 5.00) 89.80(↓ 2.80)

EPGE-GCN\B 84.60(↓ 0.40) 72.40(↓ 1.60) 82.77(↓ 1.73) 55.00(↓ 5.00) 89.00(↓ 3.60)

EPGE-LSTM 86.60 75.80 88.43 76.00 92.00
EPGE-LSTM\L 84.20(↓ 2.40) 74.40(↓ 1.40) 88.00(↓ 0.43) 85.00(↑ 9.00) 89.60(↓ 2.40)

EPGE-LSTM\B 82.60(↓ 4.00) 68.80(↓ 7.00) 87.00(↓ 1.43) 65.00(↓ 11.00) 89.40(↓ 2.60)

EPGE-MeanPooling 84.60 75.00 87.60 83.00 92.80
EPGE-MeanPooling\L 84.80(↑ 0.20) 74.80 (↓ 0.20) 88.30(↑ 0.70) 87.00 (↑ 4.00) 87.20(↓ 5.60)

EPGE-MeanPooling\B 83.40(↓ 1.20) 71.00(↓ 4.00) 87.03(↓ 0.57) 65.00(↓ 18.00) 90.40(↓ 2.40)

EPGE-MaxPooling 85.00 74.00 86.97 85.00 92.80
EPGE-MaxPooling\L 84.60(↓ 0.40) 75.60(↑ 1.60) 87.27(↑ 0.30) 86.00(↑ 1.00) 63.80(↓ 29.00)

EPGE-MaxPooling\B 84.20(↓ 0.80) 71.80(↓ 2.20) 86.67(↓ 0.30) 59.00(↓ 26.00) 90.20(↓ 2.60)

Method

F1-macro(%) Dataset
Cora CiteSeer PubMed PPI HateUser

EPGE-MEAN 86.54 59.84 88.37 52.97 81.36
EPGE-MEAN\L 85.79(↓ 0.66) 59.82(↓ 0.02) 87.11(↓ 1.26) 57.85(↑ 4.87) 73.48(↓ 7.87)

EPGE-MEAN\B 85.03(↓ 1.42) 56.24(↓ 3.61) 87.25(↓ 1.12) 37.54(↓ 15.43) 55.67(↓ 25.68)

EPGE-GCN 85.38 58.08 84.13 43.60 74.17
EPGE-GCN\L 83.55(↓ 1.84) 57.00(↓ 1.05) 82.50(↓ 1.63) 53.39(↑ 9.79) 70.34(↓ 3.82)

EPGE-GCN\B 84.65(↓ 0.73) 57.05(↓ 1.00) 82.55 (↓ 1.57) 34.13(↓ 9.46) 47.09(↓ 27.07)

EPGE-LSTM 86.89 60.05 88.33 71.02 75.08
EPGE-LSTM\L 83.89 (↓ 3.00) 56.09(↓ 3.96) 87.64(↓ 0.68) 82.39(↑ 11.37) 68.25(↓ 6.82)

EPGE-LSTM\B 82.68(↓ 4.21) 53.75(↓ 6.30) 86.80 (↓ 1.53) 49.59(↓ 21.43) 62.71(↓ 12.36)

EPGE-MeanPooling 84.58 59.59 87.64 78.66 80.35
EPGE-MeanPooling\L 84.05(↓ 0.54) 59.35(↓ 0.23) 88.16(↑ 0.52) 84.45(↑ 5.79) 69.70(↓ 10.65)

EPGE-MeanPooling\B 83.47(↓ 1.12) 55.68(↓ 3.90) 87.05(↓ 0.59) 50.17(↓ 28.48) 63.13(↓ 17.21)

EPGE-MaxPooling 84.85 59.32 86.98 81.54 78.86
EPGE-MaxPooling\L 83.85(↓ 1.00) 59.57(↑ 0.25) 87.22(↑ 0.23) 82.18(↑ 0.64) 53.76(↓ 25.10)

EPGE-MaxPooling\B 83.90(↓ 0.95) 54.33(↓ 4.99) 86.66(↓ 0.33) 42.84(↓ 38.70) 59.69(↓ 19.18)

different aggregators, namely MEAN, GCN, LSTM, MeanPooling and MaxPooling

aggregators. Table 3 summaries the results of GraphSAGE and EPGE for node
classification on five public datasets (better results are highlighted in bold).

It is noteworthy that EPGE generally achieves better performance than stan-
dard GraphSAGE, especially on PPI and HateUser. Specifically, EPGE achieves
higher F1-micro and F1-macro scores than the corresponding GraphSAGE

methods except for the Cora dataset. Overall, it is very encouraging to
note that our proposed EPGE model can greatly improve the performance of
GraphSAGE on the task of node classification in the property graphs.

6.6 Ablation Study

To verify the effectiveness of the proposed latent graph construction and biased
sampling strategies, we conduct an ablation study in this section and report
both F1-micro and F1-macro as the evaluating metric. In this section, EPGE\L
refers to EPGE without latent connections and EPGE\B represents EPGE without
biased sampling. The results are shown in Table 4, where the top table presents
the F1-micro values and the bottom table reports the F1-macro values. Also,
the performance degradation (↓) or improvement (↑) without two strategies of
EPGE are given in parentheses.

Springer Nature 2021 LATEX template

Property Graph Representation Learning for Node Classification 21

6.6.1 The Strategy of Latent Graph Construction

We remove the latent graph from the EPGE but preserve the biased sampling
strategy. From the results in Table 4, except on PPI dataset, EPGE\L (EPGE
without latent graph) generally shows performance degradation than EPGE,
with maximum degradation of 29.00% in F1-micro and 25.10% in F1-macro

on HateUser. It can be seen that EPGE with certain aggregators yields
slightly inferior performance than EPGE\L on Cora, CiteSeer and HateUser

datasets (i.e., F1-micro of EPGE-MEAN and EPGE-MeanPooling on Cora dataset,
F1-micro of EPGE-MEAN, EPGE-GCN and EPGE-MaxPooling on CiteSeer

Dataset, F1-macro of EPGE-MaxPooling on CiteSeer Dataset, F1-micro and
F1-macro of EPGE-MeanPooling and EPGE-MaxPooling on PubMed Dataset).
However, the performance degradation never exceeds more than 1%. These
ablation studies reveal the efficacy of latent connections in learning node
embedding especially for datasets where the number of edges is not many.

6.6.2 The Biased Sampling Strategy

To study the impact of biased sampling strategy, we compare EPGE with no
biased sampling. It can be seen from the results that the biased sampling strat-
egy outperform EPGE\B (EPGE without biased sampling) on all five datasets.
Especially, for EPGE-MaxPooling on PPI dataset, performance improvement
can be achieved up to 26.00% and 38.70% in F1-micro and F1-macro, respec-
tively. For HateUser dataset, there are 25.68% and 27.07% performance
improvement in F1-macro for EPGE-MEAN and EPGE-GCN, respectively. All
experimental results verify the contributions of adopting a biased sampling
strategy in learning the node embedding.

6.7 Sensitivity Analysis

In this set of experiments, we evaluate the effects of some important parame-
ters in EPGE on its performance, including the parameter of latent connection
construction, the sampling size of neighbours, and the number of edges in the
property graph.

6.7.1 The Parameter of Latent Connection Construction

In our proposed model, the latent neighbourhood is determined based on
the Pearson similarity. As we discussed, when the similarity between two nodes
exceeds the threshold λGl , they are linked by a latent edge, which finally cre-
ates a latent graph. In this section, we probe the influence of the threshold
λGl on the model’s performance. The results are presented in Table 5, where
we present the results with two different threshold values i.e., λGl is set to 0.5
and 0.8.

Compared with GraphSAGE, EPGE with two different thresholds has bet-
ter performance on all datasets with just one exception (EPGE-MaxPooling
on Cora dataset). A comparison between the performance of λGl = 0.5 and

Springer Nature 2021 LATEX template

22 Property Graph Representation Learning for Node Classification

Table 5 The Analysis of the Parameter of Latent Connection Construction.

Method Parameter
Cora CiteSeer PubMed PPI HateUser

F1-micro F1-macro F1-micro F1-macro F1-micro F1-macro F1-micro F1-micro F1-micro F1-macro

GraphSAGE-MEAN - 0.8520 0.8492 0.7300 0.5663 0.8740 0.8726 0.5500 0.3568 0.9200 0.7508

EPGE-MEAN
λGl = 0.5 0.8580 0.8645 0.7460 0.5984 0.8843 0.8837 0.6500 0.5297 0.9420 0.8136
λGl = 0.8 0.8540 0.8510 0.7420 0.5736 0.8900 0.8896 0.6400 0.5050 0.9300 0.8038

GraphSAGE-GCN - 0.8400 0.8301 0.7120 0.5446 0.8213 0.8168 0.4800 0.2488 0.9040 0.6881

EPGE-MEAN
λGl = 0.5 0.8500 0.8538 0.7400 0.5805 0.8450 0.8413 0.6000 0.4360 0.9260 0.7417
λGl = 0.8 0.8580 0.8569 0.7580 0.6089 0.8587 0.8547 0.5800 0.4292 0.9200 0.7652

GraphSAGE-LSTM - 0.8400 0.8348 0.7220 0.5760 0.8783 0.8777 0.6900 0.5920 0.8860 0.6861

EPGE-LSTM
λGl = 0.5 0.8660 0.8689 0.7580 0.6005 0.8843 0.8833 0.7600 0.7102 0.9200 0.7508
λGl = 0.8 0.8460 0.8372 0.7400 0.5936 0.8877 0.8861 0.7500 0.6833 0.9080 0.6558

GraphSAGE-MeanPooling - 0.8540 0.8441 0.7440 0.5848 0.8597 0.8605 0.6600 0.5525 0.9000 0.7486

EPGE-MeanPooling
λGl = 0.5 0.8460 0.8458 0.7500 0.5959 0.8760 0.8764 0.8300 0.7866 0.9280 0.8035
λGl = 0.8 0.8580 0.8615 0.7480 0.5794 0.8903 0.8894 0.8600 0.8277 0.9160 0.7820

GraphSAGE-MaxPooling - 0.8540 0.8410 0.7260 0.5754 0.8693 0.8674 0.6600 0.5618 0.6700 0.5564

EPGE-MaxPooling
λGl = 0.5 0.8500 0.8485 0.7400 0.5932 0.8697 0.8698 0.8500 0.8154 0.9280 0.7886
λGl = 0.8 0.8480 0.8392 0.7480 0.5771 0.8890 0.8891 0.8400 0.8075 0.9260 0.7998

λGl = 0.8 reveals an interesting pattern. It can be seen that EPGE with MEAN

or LSTM aggregators tends to perform better with λGl = 0.5, whereas EPGE

with GCN or MeanPooling aggregators performs better when λGl = 0.8. We rec-
ommend that one should adjust the threshold λGl on a validation set instead
of setting just one value, as different values are useful for different aggregators
as well as datasets.

6.7.2 The Setting of the Sampling Size

In this section, we investigate the influence of the size of sampling neigh-
bours on the model performance. [1] recommended the depth of neighbourhood
K = 2 with neighbourhood sample sizes S1 = 25 and S2 = 10. Here, S1 and
S2 are the numbers of the sampled neighbours during iteration k = 1 and dur-
ing iteration k = 2 of Algorithm 1, respectively. In this experiment, we set the
default value for K to 2 and have compared our EPGE model with GraphSAGE

by varying the neighbourhood sample sizes {S1, S2} to two sets of parameters
({25, 10} and {10, 5}). The results on five datasets are presented in Figure 4.
For each dataset, we present the F1-micro scores of models with five aggrega-
tors. A similar pattern of F1-macro results were observed but not shown due to
space constraints. For each aggregator, we present four sets of results, namely,
GraphSAGE with parameters {S1, S2} = {25, 10}, GraphSAGE with parameters
{S1, S2} = {10, 5}, EPGE with parameters {S1, S2} = {25, 10}, and EPGE with
parameters {S1, S2} = {10, 5}.

Comparing the results with five aggregators on five datasets, it can be seen
that in almost all figures, EPGE with {S1, S2} = {25, 10} generally achieves
the best performance, which is consistent with the results in Section 6.5. In
addition, whether {S1, S2} = {25, 10} or {S1, S2} = {10, 5} the results of EPGE
are generally better than that of GraphSAGE. Now turning to the experimental
evidence on EPGE when {S1, S2} = {10, 5} and GraphSAGE when {S1, S2} =
{25, 10}, we can see that the former has a comparable performance to the
latter, or even better, especially on PubMed, PPI and HateUser datasets. It
is encouraging to see that a small sampling size for EPGE is able to maintain
promising results that was achieved by GraphSAGE with larger neighbours.

Springer Nature 2021 LATEX template

Property Graph Representation Learning for Node Classification 23

������������ ����������� ������������ �����������
��

����

����

����

����

���	

���

��

��
��

��
���������� ��

������������ ����������� ������������ �����������
��

����

����

����

����

���	

���

��
��

��
��

���������� ��

������������ ����������� ������������ �����������
� ����������� ��

����

����

����

����

���	

���

��
��

��
 �

������� ���!�

������������ ����������� ������������ �����������
� ����������� ��

����

����

����

����

���	

���

��
��

��
 �

�������������� ���!�

������������ ����������� ������������ �����������
� ����������� ��

����

����

����

����

���	

���

��
��

��
 �

��"���������� ���!�

(a) The Setting of the Sampling Size (on Cora Dataset).

��
������
�� ��
������
� ��
������
�� ��
������
�
��

����

����

����

��	�

�
��

��
��

���������������

��
������
�� ��
������
� ��
������
�� ��
������
�
��

����

����

����

��	�
��

��
��

��
��������������

��
������
�� ��
������
� ��
������
�� ��
������
�
��

����

����

����

��	�

�
��

��
��

���������������

��
������
�� ��
������
� ��
������
�� ��
������
�
��

����

����

����

��	�

�
��

��
��

����������������������

��
������
�� ��
������
� ��
������
�� ��
������
�
��

����

����

����

��	�

�
��

��
��

�� ������������������

(b) The Setting of the Sampling Size (on CiteSeer Dataset).

������������ ����������� ������������ �����������
��

��	�

��	�

��	�

��	�

��		

��
�

��
��
��
��

��������������

������������ ����������� ������������ �����������
��

��	�

��	�

��	�

��	�

��		

��
�

��
��
��
��

�������������

������������ ����������� ������������ �����������
��

��	�

��	�

��	�

��	�

��		

��
�
��

��
��

��
������������ ��

������������ ����������� ������������ �����������
��

��	�

��	�

��	�

��	�

��		

��
�

��
��

��
��

������������������� ��

������������ ����������� ������������ �����������
��

��	�

��	�

��	�

��	�

��		

��
�

��
��

��
��

��!��������������� ��

(c) The Setting of the Sampling Size (on PubMed Dataset).

������������ ����������� ������������ �����������
��

���

���

���

��	

��

���

��
��

��
��

���������� ��

������������ ����������� ������������ �����������
��

���

���

���

��	

��

���

��
��

��
��

���������� ��

������������ ����������� ������������ �����������
� ����������� ��

���

���

���

��	

��

���

��
��

��
 �

������� ���!�

������������ ����������� ������������ �����������
� ����������� ��

���

���

���

��	

��

���
��

��
��

 �
�������������� ���!�

������������ ����������� ������������ �����������
� ����������� ��

���

���

���

��	

��

���

��
��

��
 �

��"���������� ���!�

(d) The Setting of the Sampling Size (on PPI Dataset).

��
������
�� ��
������
� ��
������
�� ��
������
�
��

���

���

��	

���

�
��

��
��

���������������

��
������
�� ��
������
� ��
������
�� ��
������
�
��

���

���

��	

���

��
��

��
��

��������������

��
������
�� ��
������
� ��
������
�� ��
������
�
��

���

���

��	

���

�
��

��
��

���������������

��
������
�� ��
������
� ��
������
�� ��
������
�
��

���

���

��	

���

�
��

��
��

����������������������

��
������
�� ��
������
� ��
������
�� ��
������
�
��

���

���

��	

���
�

��
��
��

�� ������������������

(e) The Setting of the Sampling Size (on HateUser Dataset).

Fig. 4 The Setting of the Sampling Size on Five Datasets

6.7.3 The Influence of the Edges

In GraphSAGE model, with more edge relationships, nodes can more likely
learn informative messages from their neighbourhood, resulting in better per-
formance for node classification. On the other hand, it will face performance
deterioration if no sufficient edges are present. Of course, our proposed EPGE

model can help. In this section, we will evaluate the performance of GraphSAGE
and EPGE when there are very few edges in the property graph. To conduct this
experiment, we randomly drop edges at a proportion of 20%, 40%, and 60%,
respectively, and then test the models’ performance on the adjusted graph. The
results on five datasets are shown in Figure 5. We present F1-micro scores of
EPGE and GraphSAGE models with five aggregators (The F1-macro results show
a similar pattern with F1-micro). In these results, we use GraphSAGE with
original edges (i.e., droprate = 0) as the baseline, and compare GraphSAGE and
EPGE at droprate = 0.2, droprate = 0.4, droprate = 0.6 with this baseline.

Springer Nature 2021 LATEX template

24 Property Graph Representation Learning for Node Classification

�� �� �� �� �
��������

�
���
���
���
�

���
���
���

��
��
��
�

	��������

���
�������

�� �� �� �
��������

�
���
���
���
�

���
���
���

	
��
��
��
�

�������

��

��������

�� �� �� �� � �
��������

�
���
���
���
�

���
���
���

��
��
��
�

	��������

���
�������

��� �� �� �� �� �
��������

�
���
���
���
�

���
���
���

��
��
��
�

	���������������
���
�������

 �� � � � � �
��������

�
���
���
���
�

���
���
���

��
��
��
�

	��������������
���
�������

(a) The Influence of the Edges (on Cora Dataset).

�� �� �
��������

�
���
���
���

�
���
���
���

	
��

��
��

�

���������
��

��

��������

�� �� �� � �
��������

�
���
���
���

�
���
���
���

	
��

��
��

�
�����������

��

��������

�� �� �� �� � � �
��������

�
���
���
���
�

���
���
���

��
��
��
�

	������������
���
�������

�� �� �� �
��������

�
���
���
���
�

���
���
���

	
��
��
��
�

�������������������

��

��������

 � � � � �
��������

�
���
���
���
�

���
���
���

��
��
��
�

	������������������
���
�������

(b) The Influence of the Edges (on CiteSeer Dataset).

�� �� �� � �
��������

�
���
���
���
�

���
���
���

	
��
��
��
�

������
��

��

��������

��� ��� ��� ��� ���
��������

�
���
���
���
�

���
���
���

��
��
��
�

�������	�
���
�������

 ��� ��� ��� ��� ��� ���
��������

�
���
���
���
�

���
���
���

	
��
��
��
�

����������

��

��������

!��� ��� ��� ��� ��� ��� ���
��������

�
���
���
���
�

���
���
���

	
��
��
��
�

� ��������������

��

��������

#���� #���� #���� #���� #���� ���� ����
��������

�
���
���
���

�
���
���
���

��

��
�

�

�!�������"�������

���
�����	�

(c) The Influence of the Edges (on PubMed Dataset).

�� � � � � � ��
��������

�
���
���
���

�
���
���
���

	
��

��
��

�

����
��

��

��������

���� ��� ��� ��� ��� ���� ����
�������

�
���
���
���
�

���
���
���

�
��
��
��
�

�����
�
����
������	��

��� �� � �
��������

�
���
���
���
�

���
���
���

	
��
��
��
�

�������

��

��������

�� � � �� ��
��������

�
���
���
���

�
���
���
���

	
��

��
��

�
��������������

��

��������

 �� � � � �� �� ��
��������

�
���
���
���
�

���
���
���

	
��
��
��
�

�������������

��

��������

(d) The Influence of the Edges (on PPI Dataset).

��� ��� ��� ��� ���
��������

�
���
���
���
�

���
���
���

	
��

��
��
�

���������
��

��

��������

�� �� � �
��������

�
���
���
���
�

���
���
���

	
��

��
��
�

�����������

��

��������

 � � � � �
��������

�
���
���
���
�

���
���
���

	
��
��
��
�

������������

��

��������

!� !� � � � �
��������

�
���
���
���

�
���
���
���

	
��

��
�

�

� �����������������

��

��������

� � �� �� �� ��
��������

�
���
���
���

�
���
���
���

	
��

��
�

�
� ��������!�������

��

��������

(e) The Influence of the Edges (on HateUser Dataset).

Fig. 5 The Influence of the Edges on Five Datasets.

The results indicate that GraphSAGE generally suffers a performance
decrease with higher droprate and EPGE shows a similar situation. However,
when comparing GraphSAGE and EPGE with the same droprate, GraphSAGE
show worse results, which means that our method outperforms GraphSAGE

in graphs with much fewer edges, demonstrating the effectiveness of latent
connections and bias sampling strategies of EPGE.

6.8 Label Consistency Analysis

As presented in Section 5, the label consistency metric τ evaluates the useful-
ness of the sampled neighbourhood information. Table 6 reports the values of
τ in GraphSAGE and EPGE models on five datasets. It can be seen that EPGE

has a much higher τ value than GraphSAGE, which implies that the node and
its sampled neighbours have more of the same labels than that in GraphSAGE.

Springer Nature 2021 LATEX template

Property Graph Representation Learning for Node Classification 25

Table 6 The Label Consistency Metric τ of GraphSAGE and EPGE.

Method

τ Dataset

Cora CiteSeer PubMed PPI HateUser

GraphSAGE 0.8176 0.7393 0.8144 0.5005 0.7753
EPGE 0.8517 0.8084 0.8889 0.9830 0.9982

Based on these results, it can clearly be seen that our proposed EPGE has bet-
ter neighbours selecting and aggregating strategy, and this is the main reason
why our method can obtain encouraging performances.

7 Conclusions and Future Work

Most graphs in the real world are property graphs, because other than contain-
ing the structure information, rich property information exist for each node
in the graphs. The early graph representation learning based on random walk
focused only on the structure of graph for learning the node embedding, but
overlooked the significance of the properties of nodes. Although Graph Neural

Networks use the properties as the initial features of nodes and then aggregate
feature information of the neighbours, they fail to capture implicit/latent rela-
tionships among the nodes, which is implicit in the given structure. To address
those limitations in existing methods, we propose a novel framework for prop-
erty graph representation learning – EPGE, which not only exploits the existing
graph but also builds a latent graph based on the similarity between nodes
in the graph. This new latent connection has the ability to capture the long-
distance dependencies from nodes with similar properties but far away in the
graph. More importantly, the property graph we construct is simplified into
a homogeneous graph, which is simpler and more efficient than complex het-
erogeneous graphs, hence requiring less memory and computational resources.
In addition, EPGE has an effective neighbour sampling technique that can
choose informative features from neighbours. On five publicly available graph
datasets, the proposed model outperforms the state-of-the-art methods includ-
ing GraphSAGE for the task of node classification. We further confirmed the
superiority of our proposed formulation through a novel quantitative metric
for the usefulness of the sampled neighbourhood in the graph.

Acknowledgements. This work was supported by Strategic Priority
Research Program of the Chinese Academy of Sciences with No.XDC02030400,
and National Key R&D Program 2021 with No.2021YFB3101001.

Declarations

• Funding: This work was supported by [Strategic Priority Research Program
of the Chinese Academy of Sciences with No.XDC02030000], [National Key

Springer Nature 2021 LATEX template

26 Property Graph Representation Learning for Node Classification

Research and Development Program of China with No.2021YFB3101403],
and [National Key R&D Program 2021 with No.2021YFB3101001].

• Competing interests: The authors have no competing interests to declare
that are relevant to the content of this article.

• Ethics approval: Not applicable.
• Consent to participate: Not applicable.
• Consent for publication: The authors confirm that the manuscript has been
read and approved by all named authors and that there are no other persons
who satisfied the criteria for authorship but are not listed. The authors
further confirm that the order of authors listed in the manuscript has been
approved by all of us.

• Availability of data and materials: All data generated or analysed during
this study are included in this published article.

• Code availability: The code of this work can be downloaded from: https:
//anonymous.4open.science/r/EPGE-open-code-4C05.

• Authors’ contributions: Conceptualization: [Shu Li], [Nayyar A. Zaidi],
[Gang Li]; Methodology: [Shu Li], [Nayyar A. Zaidi]; Software: [Shu Li];
Validation: [Shu Li]; Investigation: [Shu Li]; Writing - Original Draft: [Shu
Li]; Writing - Review & Editing: [Nayyar A. Zaidi], [Gang Li]; Supervision:
[Nayyar A. Zaidi], [Gang Li]; Formal analysis: [Meijie Du], [Hongfei Zhang];
Validation: [Meijie Du]; Investigation: [Zhou Zhou]; Data Curation: [Hongfei
Zhang]

References

[1] Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning
on large graphs. In: NIPS, pp. 1024–1034 (2017)

[2] Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., Jegelka, S.:
Representation learning on graphs with jumping knowledge networks. In:
Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
vol. 80, pp. 5449–5458 (2018)

[3] Li, J., Rong, Y., Cheng, H., Meng, H., Huang, W., Huang, J.: Semi-
supervised graph classification: A hierarchical graph perspective. In: The
World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May
13-17, 2019, pp. 972–982 (2019)

[4] Manipur, I., Manzo, M., Granata, I., Giordano, M., Maddalena, L., Guar-
racino, M.R.: Netpro2vec: A graph embedding framework for biomedical
applications. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 19(2), 729–740 (2022). https://doi.org/10.1109/TCBB.
2021.3078089

[5] Park, N., Kan, A., Dong, X.L., Zhao, T., Faloutsos, C.: Estimating

https://anonymous.4open.science/r/EPGE-open-code-4C05
https://anonymous.4open.science/r/EPGE-open-code-4C05
https://doi.org/10.1109/TCBB.2021.3078089
https://doi.org/10.1109/TCBB.2021.3078089

Springer Nature 2021 LATEX template

Property Graph Representation Learning for Node Classification 27

node importance in knowledge graphs using graph neural networks. In:
Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA,
August 4-8, 2019, pp. 596–606 (2019)

[6] Kipf, T.N., Welling, M.: Semi-supervised classification with graph con-
volutional networks. In: 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings (2017)

[7] Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on
graphs: Methods and applications. IEEE Data Eng. Bull. 40(3), 52–74
(2017)

[8] Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and
performance: A survey. Knowl. Based Syst. 151, 78–94 (2018)

[9] Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural net-
works on graphs with fast localized spectral filtering. In: Advances in
Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pp. 3837–3845 (2016)

[10] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.:
Graph attention networks. In: 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings (2018)

[11] Platonov, O., Kuznedelev, D., Diskin, M., Babenko, A., Prokhorenkova,
L.: A critical look at the evaluation of GNNs under heterophily: are we
really making progress? arXiv (2023). http://arxiv.org/abs/2302.11640
Accessed 2023-05-19

[12] Wang, T., Jin, D., Wang, R., He, D., Huang, Y.: Powerful Graph Convo-
lutional Networks with Adaptive Propagation Mechanism for Homophily
and Heterophily. Proceedings of the AAAI Conference on Artificial Intelli-
gence 36(4), 4210–4218 (2022). https://doi.org/10.1609/aaai.v36i4.20340.
Accessed 2023-05-19

[13] Newman, M.E.J.: A measure of betweenness centrality based on random
walks. Soc. Networks 27(1), 39–54 (2005)

[14] Fouss, F., Pirotte, A., Renders, J., Saerens, M.: Random-walk com-
putation of similarities between nodes of a graph with application to
collaborative recommendation. IEEE Trans. Knowl. Data Eng. 19(3),
355–369 (2007)

http://arxiv.org/abs/2302.11640
https://doi.org/10.1609/aaai.v36i4.20340

Springer Nature 2021 LATEX template

28 Property Graph Representation Learning for Node Classification

[15] Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social
representations. In: The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA -
August 24 - 27, 2014, pp. 701–710 (2014)

[16] Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks.
In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, August
13-17, 2016, pp. 855–864 (2016)

[17] Perozzi, B., Kulkarni, V., Skiena, S.: Walklets: Multiscale graph embed-
dings for interpretable network classification. CoRR abs/1605.02115
(2016)

[18] Chen, H., Perozzi, B., Hu, Y., Skiena, S.: HARP: hierarchical repre-
sentation learning for networks. In: Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innova-
tive Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, pp. 2127–2134 (2018)

[19] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio,
Y.: Graph attention networks. In: ICLR (2018)

[20] Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and
locally connected networks on graphs. arXiv preprint arXiv:1312.6203
(2013)

[21] Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural net-
works on graphs with fast localized spectral filtering. Advances in neural
information processing systems 29 (2016)

[22] Duvenaud, D.K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel,
T., Aspuru-Guzik, A., Adams, R.P.: Convolutional networks on graphs for
learning molecular fingerprints. Advances in neural information processing
systems 28 (2015)

[23] Atwood, J., Towsley, D.: Diffusion-convolutional neural networks.
Advances in neural information processing systems 29 (2016)

[24] Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural net-
works for graphs. In: International Conference on Machine Learning, pp.
2014–2023 (2016). PMLR

[25] Hu, F., Zhu, Y., Wu, S., Wang, L., Tan, T.: Hierarchical graph convo-
lutional networks for semi-supervised node classification. In: Proceedings

Springer Nature 2021 LATEX template

Property Graph Representation Learning for Node Classification 29

of the Twenty-Eighth International Joint Conference on Artificial Intel-
ligence, IJCAI 2019, Macao, China, August 10-16, 2019, pp. 4532–4539
(2019)

[26] Liu, M., Gao, H., Ji, S.: Towards deeper graph neural networks. In: KDD
’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, Virtual Event, CA, USA, August 23-27, 2020, pp. 338–348
(2020)

[27] Abu-El-Haija, S., Kapoor, A., Perozzi, B., Lee, J.: N-GCN: multi-scale
graph convolution for semi-supervised node classification. In: Proceedings
of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence.
Proceedings of Machine Learning Research, vol. 115, pp. 841–851 (2019)

[28] Zhu, J., Rossi, R.A., Rao, A., Mai, T., Lipka, N., Ahmed, N.K., Koutra,
D.: Graph Neural Networks with Heterophily. Proceedings of the AAAI
Conference on Artificial Intelligence 35(12), 11168–11176 (2021). https:
//doi.org/10.1609/aaai.v35i12.17332. Accessed 2023-05-19

[29] Du, L., Shi, X., Fu, Q., Ma, X., Liu, H., Han, S., Zhang, D.: GBK-GNN:
Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily
and Heterophily. arXiv. arXiv:2110.15777 [cs] (2022). http://arxiv.org/
abs/2110.15777 Accessed 2023-05-19

[30] Hou, Y., Chen, H., Li, C., Cheng, J., Yang, M.-C.: A Representation
Learning Framework for Property Graphs. In: SIGKDD, pp. 65–73 (2019)

[31] Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.:
Collective classification in network data. AI Mag. 29(3), 93–106 (2008)

[32] Namata, G., London, B., Getoor, L., Huang, B.: Query-driven Active
Surveying for Collective Classification, 8

[33] Pei, H., Wei, B., Chang, K.C.-C., Lei, Y., Yang, B.: Geom-gcn: Geometric
graph convolutional networks. In: International Conference on Learning
Representations (2020). https://openreview.net/forum?id=S1e2agrFvS

https://doi.org/10.1609/aaai.v35i12.17332
https://doi.org/10.1609/aaai.v35i12.17332
http://arxiv.org/abs/2110.15777
http://arxiv.org/abs/2110.15777

	Introduction
	Related Work
	Random Walk-based Methods
	Graph Neural Networks

	Preliminaries
	Graph Definition
	Graph Representation Learning
	GraphSAGE
	Existing and Latent Graphs

	Methodology
	EPGE Framework
	Latent Graph Construction
	Bias Sampling Neighborhood
	Multi-modality Neighbourhood Aggregation

	The Algorithm of EPGE
	Model Training

	Label Consistency Metric
	Experiment and Analysis
	Datasets
	Baselines
	Experiment Setup
	Code
	Results of Node Classification
	Comparison with Baselines
	Comparison with GraphSAGE

	Ablation Study
	The Strategy of Latent Graph Construction
	The Biased Sampling Strategy

	Sensitivity Analysis
	The Parameter of Latent Connection Construction
	The Setting of the Sampling Size
	The Influence of the Edges

	Label Consistency Analysis

	Conclusions and Future Work
	Acknowledgements

