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Abstract—Tabular data generation has seen renewed interest
with the advent of Generative Adversarial Networks (GAN).
Recently, it has been shown that one can use a Bayesian network
as either a generator or a discriminator in the GAN framework,
resulting in an algorithm known as GANBLR. It has been shown
that GANBLR gives state of the art results for tabular data
generation. However, the model has one limitation. It uses class
attributes during model training. For example, a supervised
Bayesian network is needed as a generator at training time.
This makes GANBLR inapplicable for cases where we do not
have access to class information. Addressing this shortcoming
of GANBLR has been the main motivation of this work. In this
work, we have proposed a new model of tabular data generation –
Masked Ensemble Tabular Generator (MEG), which does
not require class labels to generate tabular data. The proposed
models rely on a novel strategy of using a collection of Bayesian
networks as part of the generator, and relies on masking operations
to train the generator efficiently. It also uses a group-based
similarity measure to adjust the number of samples generated
from each Bayesian network in the collection. We perform
extensive experiments on a variety of datasets and demonstrate
that MEG not only outperforms baselines that do not have class
information during training, such as CTGAN and TVAE, but also
outperforms baselines that provide access to class information
during training, such as TableGAN and CtabGAN methods. It
has almost similar performance in terms of machine learning
utility to GANBLR, and of course is greatly advantaged by being
truly unsupervised in nature. We highlight this by demonstrating
its applicability to a clustering task. We also investigate the privacy
preserving capabilities of MEG and demonstrate its superior
performance compared to other baselines.

Index Terms—Generative Adversarial Network, Tabular Data,
Naive Bayes, Logistic Regression, Bayesian Networks

I. INTRODUCTION

The last few years have seen significant breakthroughs in the
world of artificial data generation. Many of these breakthroughs
have been due to advances in the development of Generative
Adversarial Networks (GAN), a two-part model consisting of
a generator and a discriminator that learns to optimise its
parameters by optimising an adversarial loss function. GAN-
based models have shown remarkable success in generating
structured data such as images and text [1], [2], [3]. Their
application to tabular data generation has been fraught with
challenges. Of course, the main challenge stems from the
fact that there is no explicit structure among the input data
features to be exploited by the convolutional layers [4], [5],
leaving it to the dense layers to develop features to capture
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the correlation between features. Note that tabular datasets
consist mainly of categorical and numerical features. How to
seamlessly handle these different feature types in GAN model
is not trivial. Recently, it has been shown that for tabular
datasets, one can rely on Bayesian networks as generators or
discriminators. For example, naive Bayes can be used as the
generator and its discriminative equivalent – logistic regression
– as the discriminator. The resulting model – GANBLR, has been
shown to achieve state-of-the-art results for data generation
on a variety of tabular datasets [6]. However, the model has a
limitation. It uses the class label during the generation process.
Note that the use of the class label in data generation is
common in various tabular data generation models, such as
TableGAN, CtabGAN, etc [4], [7]. This is because most
of the artificially generated data will be used in supervised
classification settings and will be expected to produce a model
with similar performance (accuracy) to the model trained on
the original data [8]. What if the class information is not
available at the data generation stage? Can we still train
a data generation model that can generate high quality
data without knowing the class labels?1Investigating this
question has been the main motivation for the research
conducted in this paper.

At the heart of GANBLR are Bayesian Networks (e.g., k-
dependency Bayesian Networks in [6], and standard Bayesian
Networks in [9]). Bayesian networks involve structure and
parameter learning. Structure learning determines which at-
tribute or attributes make up the parent set of an attribute. By
default, the class attribute is considered to be the parent of each
attribute and is therefore excluded from the structure learning
stages. For example, a TAN-based Bayesian network will learn
the structure (parent-child relationships) based on pair-wise
mutual information and minimum spanning tree connecting
the attributes – and later add class to be an additional parent
of each attribute [10]. Alternatively, we can learn the structure
based on a heuristic search technique (e.g. hill climbing) that
optimises objectives such as log-likelihood. In this case we
have two options. First, one can exclude the class during
structure learning, and once the structure is learned, add it as
a parent of each attribute. Secondly, the attribute class can be
considered as any other attribute and a structure is learned.
Standard classification tasks use the first strategy – note that the

1Note that the class labels will be present at evaluation time, i.e. the data
will still be used for the supervised learning task. We consider a scenario
where the class information is missing during the data generation phase.
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second is the unsupervised strategy, as it does not distinguish
the class label during structure learning. One can use this
version of structure learning of Bayesian networks in GANBLR
model to address the issue of missing classes. However, this
strategy may be flawed. Note that the identification of the
class variable provides implicit information that the class
variable is correlated (or connected) with all other features.
With unsupervised structure learning in Bayesian networks,
there is no guarantee that all features will be selected to be in
the Markov blanket of the class. This can lead to the elimination
of some important features that would otherwise have been
useful indicators for class prediction.

To incorporate Bayesian networks without class information
into a GANBLR framework, we have introduced a novel
formulation called Masked Ensemble tabular data Generator –
MEG, which is based on a collection (or ensemble) of Bayesian
networks. As we discussed earlier, a Bayesian network such
as TAN or NB could learn the structure based on mutual
information (or assuming independence), and later add the
class as the parent of each attribute. In MEG, each attribute
(including class) takes turns to be the parent, and a separate
structure is learned. This means that if we have n variables
(including the class attribute), we will learn n structures. MEG
uses an effective masking technique to implement only one
structure to enable the functionality of multiple structures - and
is therefore called masked generator. It can be seen that since
no prior class information is required, and multiple structures
are learned – it is ensemble in practice. Finally, it is based
on a collection of Bayesian networks used in an adversarial
network, so we characterise it as a variant of GANBLR.

In MEG, during adversarial learning, each component of
the generator takes turns to generate the samples – and a
discriminator is trained to determine whether the generated
sample is synthetic (fake) or original. We will discuss how MEG
differs from typical GAN-based models in that it relies on
group-wise similarity between generated and original samples,
in addition to learning to classify fake versus original. This is
because, since we have multiple generators producing different
samples, – MEG uses the similarity between generated and
original data to weight the contribution of each structure in
producing the final output. The group similarity loss is used as
a weight to control the size of the synthetic sample from the
generator. In other words, the better the quality of the synthetic
sample generated by a structure – where quality is measured
by some metric loss – the lower the loss, the higher the weight
learned for that structure, so that more samples are generated
from that structure.

Let us summarize the contributions of this work:
• We propose a novel model of tabular data generation that

does not require class labels, namely MEG – which uses
a collection of Bayesian networks as generators, incorpo-
rating a group-based metric loss in the discriminator in
addition to the typical fake vs. original discrimination loss.
The generators in MEG work with the the discriminator
to form an adversarial framework to improve the quality
of to improve the quality of synthetic tabular data.

• We compare MEG with existing SOTA GAN models on 10
public tabular datasets. The results show that MEG out-
performs in terms of machine learning utility,
and comparable results in terms of statistical similarity
and related measures.

• We demonstrate the applicability of MEG for unsupervised
tasks such as clustering, and discuss its application to
privacy preserving scenario.

The rest of the paper is organized as follows. We will discuss
related work in Section II. The details of MEG are provided in
Section III. We provide an extensive experimental analysis in
Section IV. We conclude in Section V with pointers to future
works.

II. RELATED WORK

In this section, we will discuss existing GAN-based models
for tabular synthetic data generation. Current research into
the GAN models for tabular synthetic data generation has
taken three directions. The first direction uses the vanilla
GAN structure, while the second direction uses the conditional
models based on the conditional GAN structure. The last
direction is unique and uses the Bayesian model with GAN
structure, which can provide excellent interpretation as well
as SOTA performance. In the following, we will discuss these
three directions in detail.

A. Vanilla GAN-based Tabular Generation

This stream of research is based on the foundational work
of [11], in which a random noise (generated from a pre-
determined distribution) is used as an input to the generator.
The generator uses the input to approximate a real data
distribution with the encoder and decoder model. The output of
the generator is the synthetic data generated. The discriminator
uses this synthetic data and the real data to train a classifier
to distinguish the synthetic data from the real data. There are
four notable works that use this vanilla GAN strategy, and we
will discuss them below. Note that we will use the term vanilla
GAN to refer to the model of [11]. Of course, almost all works
using GAN are variants of [11].

The MedGAN [7] model is one of the earliest works to use the
auto-encoder architecture as the structure of the generator. The
model is capable of generating both categorical and numerical
features that are needed to generate authentic electronic medical
records. The training in the MedGAN model uses mini-batch
averaging to address the mode collapse problem. In addition,
batch normalisation with short-cut links is used.

The CrGAN model [12] is designed to generate Passenger
Name Records (PNR) data for the airline industry. The PNR
data includes details of the passenger’s personal information
such as name, date of birth, booked travel information, flight
information, payment details, etc, flight information, payment
details, etc. Note that PNR data can consist of both categorical
and numerical features that may have missing values. To
generate features with missing values using the normal vanilla
GAN structure can be challenging. To address this issue, the
CrGAN model proposes both categorical feature embedding
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and a cross-network architecture. It is shown that the CrGAN
model can generate high quality PNR data.

A convolutional neural network is used as a generator of
TableGAN [4] and an information loss is used instead. It
is shown that TableGAN not only ensures a high machine
learning utility, but also claims to preserve the privacy of the
data. Note PATEGAN [13] is another notable work, similar to
TableGAN, that is designed to prevent privacy attacks. 2.

The vanilla GAN-based tabular generation models mentioned
above are effective in different domains. Most of the vanilla
GAN-based tabular generation models are unsupervised, which
means that they do not need the class to train the generator and
discriminator. However the TableGAN which is one of the best
performing vanilla GAN-based tabular generation models, is
supervised. The TableGAN has the classifier in its framework
and requires ground truth (label feature) from the original data.

During the empirical evaluation in section IV, we will
use TableGAN as a representative of all vanilla GAN-based
methods due to its superior performance.

B. Conditional GAN based Tabular Generation

The conditional GAN-based tabular data generation models
use a conditional vector to specify the particular feature value
or class label to be generated. Notable work in this stream of
research is that of CW-GAN [14], which has been shown to
outperform competing methods on various data generation tasks.
There are three different loss functions used in the CW-GAN
model. The first loss is the Wasserstein Distance Loss, which
is calculated between the synthetic and real data. The second
loss is the gradient penalty, which can be used to regularise
the model complexity of the discriminator model. The last loss
is the Auxiliary Classifier Loss, which can be used to assist
the generator in generating synthetic data belonging to the
specified class.

Three well-known models for tabular data generation, such
as CTGAN [15], TVAE [15] and CtabGAN [7] also fall into
this research stream. CTGAN and TVAE use mode-specific
normalisation and training-by-sampling to produce higher
quality synthetic datasets with both categorical and numerical
features. Inspired by Gaussian Mixture Model, mode-specific
normalisation first computes the modes of a numerical feature.
The mean and standard deviation of each of the modes are then
taken. The numerical feature values are then normalised by the
associated mean and standard deviation. The newly obtained
normalised value is concatenated with the categorical features
together to represent the input for CTGAN and TVAE models.
The training-by-sampling strategy is the key component of
the CTGAN and TVAE generator. It ensures that the instances
of the minor class have a similar chance of being sampled
as the instances of the major class. The TVAE differs from
CTGAN only in its network structure, which uses VAE as
the structure and CTGAN uses the fully connected neural

2A privacy attack modifies the private aggregation of teacher ensembles
so that the privacy noise added to each individual sample of the tabular data
is tightly bounded. On the other hand, the noise is added to the aggregation
results of all teachers and is therefore difficult to attack.

networks. CtabGAN has a very similar mechanism for the
process of generating synthetic data sets. However, in the
CtabGAN framework there is an auxiliary classifier that uses
the training data including the label column to improve the
quality of the generation. The CtabGAN framework has better
performance than CTGAN in terms of machine learning utility.
The conditional GAN based generator such as CtabGAN can
generate synthetic data with certain conditions such as feature
value, however, it requires the specification of a class label
and is therefore supervised in nature.

During empirical evaluation in Section IV, we will use
CTGAN, TVAE and CtabGAN as a representative of all
conditional GAN-based methods.

C. Generative models inspired by Bayesian Network

The current SOTA model for tabular data generation is
GANBLR, which trains a Bayesian network (K-dependent
Bayesian Network (KDB)) as the generator and a logistic
regression (or discriminative KDB) as the discriminator. The
generator learns to optimize the conditional log-likelihood
of the feature towards the label. Since the generator from
GANBLR is a Bayesian network whose parameters constitutes
of probabilities, therefore, one can interpret the tabular data
generation at both local and global levels. It has been shown
that GANBLR provides excellent machine learning performance,
however, it has the limitation of generating categorical data
only. Another framework under this direction is GANBLR++,
which is used to generate both numerical and categorical tabular
data [9]. As we discussed earlier, GANBLR and its variants
make use of class information, and can not be used in settings
where class information is not available.

During empirical evaluation in Section IV, we will
use GANBLR as a representative of generative models inspired
from Bayesian networks.

III. METHOD

In this section, we will take a step back and introduce some
preliminaries that will serve as a foundation. Later, we will
delve into the details of our proposed method MEG.

A. Preliminary and Notations

We will borrow most of the terminology from [6], [16]. We
denote the generative model (generator) as G, and the discrimi-
native model (discriminator) as D. The real (or original) dataset
is denoted as Ddata = [(Xg, Yg)], where Xg = [x1,x2..,xm],
where xi ∈ Rn, i.e., data with a total of m instances
each having n features. Similarly, Yg = [y1, y2.., ym], where
yi ∈ R1, representing corresponding class labels. The term
g in the notation makes it explicit that the dataset is to be
processed by the generator model – G. We denote the real
data distribution as Pdata(Xg, Yg) or Pdata(·) from which Ddata
is generated.

In the GAN formulation, G is trained to approximate the real
data distribution Pdata(.) with some random (noise) input. We
denote the random input data as: Z = [z1, ..., zm]. And the
distribution generating Z as PZ(Z) or PZ(.). The synthetic
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dataset is denoted as Sdata = [X̄g], where X̄g = [x̄1, ..., x̄m].
Here, x̄i ∈ Rn.

As we know that in GAN formulation the generator produces
synthetic data from the noise – in our notation, we express it
as: Sdata ∼ G(Z). The discriminator model – D, is trained to
discriminate between Ddata and Sdata. To do this, an auxiliary
label Yd = 1 and Yd = 0 is appended with Ddata, and Sdata
respectively, indicating whether the sample belongs to original
or synthetic data. Formally, the objective function of tabular
GAN models leads to solving the min-max adversarial game,
which in our notation is expressed as:

max
D

min
G

ED∼Pdata(.)[logD(Ddata)]

+EZ∼PZ(.)[log(1−D(G(Z)︸ ︷︷ ︸
Sdata

))]. (1)

It can be seen that, G(Z) generates the synthetic dataset
samples Sdata, and D attempts to convert the synthetic data to
a scalar value representing the probability of it being real or
not.

The generator and discriminator in GANBLR are ac-
tually Bayesian Networks. Precisely, they are generative-
discriminative equivalents of each other – e.g., a naive Bayes
as generator and logistic regression as discriminator, or, a KDB
for generator and a discriminative KDB as discriminator [17].
The generator in GANBLR has two roles, it not only is used to
sample the synthetic data, which is used by the discriminator
to decide if it is fake or not, but it also influence the final
objective function by doing the classification of the class label.
The loss attributed to generator can be defined as:

min
θgθgθg

− log

P(y|x)︷ ︸︸ ︷
G(Ddata)+ log(1−D(

G(.)︷︸︸︷
Sdata)), (2)

where dependence on the class attribute y is obvious. For
sake of completeness, let us also present the discriminator’s
objective function, optimized by GANBLR:

max
θdθdθd

log

P(fake|x)︷ ︸︸ ︷
D(Ddata)+ log(1−D(

G(.)︷︸︸︷
Sdata)). (3)

Here, G(.) denotes the sampling output from the trained
generator. It can be seen that class attribute plays the pivotal role
in optimizing GANBLR objective function. In the following, we
will formulate our proposed MEG algorithm that can generate
quality tabular synthetic data even when no class label is present
(or specified).

B. Masked Ensemble Generative Tabular Generator – (MEG)

Let us discuss our proposed formulation MEG. We will
discuss its salient features by characterizing its components
namely:

• Collection of Bayesian networks,
• Masked network,
• Adaptive Weighting with group similarity sampling,

before providing a full algorithm in Section III-C. An archi-
tecture of MEG is shown in Figure 1.

1) Collection of Bayesian Networks: It can be seen from
Equation 2 that GANBLR relies on a supervised Bayesian
network. We discussed the possibility of using an unsuper-
vised Bayesian network in Section I and discussed that it
might not be very effective at generating data for supervised
downstream tasks such as classification. The problem is that for
classification, the class feature should be considered as a parent
for all other attributes. One way to deal with this problem in
structure learning is to use different structures that enforce
that all attributes alternate as the class attribute. MEG uses this
approach, i.e. data is generated from different structures, and it
is the discriminator’s job to choose the structure that generates
data that most closely resembles the original data.

Consider an example where we have three independent
attributes and one class attribute: {X1, X2, X3, Y } – MEG
initializes four Bayesian networks, in which each of the four
attributes will act as the class (or proxy for the class), as shown
in Figure 2. For each structure, MEG relies on the strategy of
structure learning such as TAN or KDB. That is, it first learns
a structure without the class attribute. Later, the class attribute
(proxy class attribute) is associated with each attribute. In this
paper, in order to simplify the implementation structure instead,
i.e. the attributes are assumed to be independent of the class
(or proxy class attribute).

It can be seen that some of the structures might be
more useful than the others for a downstream task (e.g. for
classification, where the dependent variable is, say, feature X0,
the most suitable structure for producing the data will be the
one that includes feature X0 as a class). We will see that MEG
relies on adaptive weighting and eventually learns which
is the appropriate structure through an adversarial learning
process. In some cases, the structures that have (presumably)
incorrect attributes as a class can still generate samples that
are closer to samples from the true distribution. MEG will learn
to distinguish between different structures and weight them
differently, eventually learning to sample from the structure
that produces data most similar to the target data. However,
the weighting is soft weighting. This means that MEG learns
a weight distribution over the structures. For example, a 0.2
weight on a structure suggests that MEG will sample only 20%
of the data from that structure – because its synthetic data
often does not bear a true resemblance to the original data.

During training (similar to GANBLR), MEG enforces the
probability constraints on its parameters, i.e., it is made sure
that the parameters learned are actual probabilities. Specifically,
for every k’th structure in the generator – following constraint is
met:

∑Xi

j=1 θxj
i |xk,πxi

= 1, where Xi represents the cardinality

of i-th feature and xj
i denotes the j-th feature value for feature

i. And xk represents the value of class attribute, and πxi

denote the value of the attribute which is the additional parent
of attribute i. Additionally, the following constraint is also
satisfied:

θxj
i |xk,πxi

=
exp (θxj

i |xk,πxi
)∑Xi

j=1 exp (θxj
i |xk,πxi

)
, (4)
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Figure 1: Illustration of MEG architecture.

Figure 2: Ensemble Bayesian Network to mask training in Generator. The node of the Bayesian network will be masked by its index.

2) Masked Network: As we discussed earlier, MEG consists
of a collection of Bayesian networks, each with its own
parameters. In practice, MEG implements a mask-based strategy,
i.e. it uses a fully connected dense artificial neural network
layer. This is similar to an auto-encoder, where the number of
nodes in the first layer is the same as the number of nodes in
the last layer, except that there is no intermediate layer. As
shown in Figure 2, the masks are specified for each Bayesian
network structure. Note that the mask only sets the learnable
and fixed parameter settings during learning. Specifically, it
specifies which parameters should be learned based on which
Bayesian network structure is updated. Let us summarise the
generator masking strategy of MEG in the following:

• Giving original data Ddata which has n features – the
training of the MEG takes n stages.

• In each training stage n, one of the features xk is selected
as the label column (we will discuss later in this section,
that a loss of form – log(P(xk|x ̸=k)) is optimized by the
generator).

• A Bayesian network structure is learned based on strategy
such as TAN or NB.

• The parameters which connects the neuron from features
x ̸=k to xk are set to learnable. All other parameters that
are fixed are not learned.

• Once the parameters for k-th structure (θθθkg ) are trained,
they are saved and iteration begins for structure belong
to the next feature.

At the end of the training, generator network will be parame-
terized by n set of weights: [θθθkg ]

n
k=1 (or denoted as just θθθg).

3) Adaptive Weighting with Group Similarity Sampling:
Once the parameters of the generator – θgθgθg , are trained, it begins
its task of generating (sampling) the synthetic data. In this
section we will illustrate an adaptive sampling process used
by MEG. We will use Ḡ(.) to denote the sampling action of
the generator. Specifically, we will use the term Ḡ(T ) for T
samples generated by the generator. Similar to the sampling
method of GANBLR, forward sampling [16] is used by MEG
to generate the synthetic data – Sdata. The main difference, of
course, is that MEG can sample from n different structures.
Not all of these structures are equally important, so the size
of the samples generated from each structure must be learned
by MEG. Adaptive sampling is done by a specialised component
in the architecture of MEG. Unlike the traditional generator
and discriminator, MEG has an additional component that is
trained to learn the group similarity between the set of samples
generated by the generator and the set of samples selected
from the original data.

Let us set the size of the total synthetic dataset (Sdata)
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size over n structures as: M =
∑n

i=1 mi, where mi is the
sample size for the i-th structure. Note, Sdata is obtained by
concatenating sampled data from n structures as:

Sdata = [Ḡ1(m1)⊕, Ḡ2(m2)⊕, . . . ,⊕Ḡn(mn)]. (5)

Note, Ḡn(mn) denotes data generated by generator utilizing
structure n and generating mn data points.

We calculate the group similarity between synthetic data
and the original data as:

LM =

n∑
i=1

d(Si
data,Ddata). (6)

where Si
data is the output of Ḡi(mi). Before, delving into

adaptive weighting, let us discuss our options for computing
group-wise similarity. The simplest option is to compute the
pair-wise average Euclidean distance or Cosine similarity
between Si

data and Ddata. We, however, have proposed a variant
of average similarity. As each sample set Si

data, comes from
structure i, which has a unique class – we compute the pair-
wise similarity of samples only belonging to a particular class
value. E.g., if attribute i takes Xi values, and is used as the
class in structure generating sample Si

data, we use the following
measure:

d(Si
data,Ddata) =

1

Xi

Xi∑
j=1

1

Z

mi∑
q=1

|Ddata|∑
r=1

d̂(x
(q)
S,j ,x

(r)
O,j). (7)

Here, d̂(.) denotes the Euclidean distance. Z is equal to mi ×
|Ddata|. x(q)

S,j denotes q-th data point in synthetic set, where
value of feature i equal to j. Similarity, x(r)

O,j denotes denotes
r-th data point in original set, where value of feature i equal
to j.

In practice, we use a slightly different group-similarity to
incorporate weighting. We modify Equation 6 to incorporate
weights as:

LM =

n∑
i=1

γid(Si
data,Ddata). (8)

It can be seen that we have introduced a term γi to weight our
group similarity accordingly. Of course γi here is γi =

Li
M

LM

and where Li
M = γid(Si

data,Ddata). Note, γi gives us the recipe
to choose the size of sample sets in Equation 5, as we define
mi as mi = γiM It can be seen that how MEG automatically
adjust the size of sample mi from each structure, based on the
learned parameter γi. Note, γi is learned as part of generator
training, when discriminator is fixed. In the following, we
will integrate various components of MEG and formalize its
objective function.

4) Typical Discriminator Loss and Proxy Supervised Loss:
Let us discuss the objective function of generator in MEG first.
As generator constitutes a collection of Bayesian networks
in MEG, where each attribute takes turn to be the class – the
first term of the objective function of GANBLR in Equation 2
is modified as:

−
n∑

i=1

log(P(xi|x ̸=i)) + log(1−D(Sdata)). (9)

We call this the proxy supervised loss. As we mentioned
earlier, MEG also has an adaptive weighting based on group
similarity, where group similarity metric loss is defined Equa-
tion 8. We modify generator’s objective function to incorporate
the group similarity loss as:

min
θgθgθg

−
n∑

i=1

log(P(xi|x ̸=i)) + LM + log(1−D(Sdata)).

(10)
We will be interested to see the relative importance of various
component, and therefore, will introduce the two hyper-
parameters α and β in generator’s objective function as:

min
θgθgθg

−
n∑

i=1

log(P(xi|x ̸=i)) + α [LM ] + β [log(1−D(Sdata))] .

(11)
Here, hyper-parameter β can be used to control the influence
of discriminator, whereas, hyper-parameter α can be used to
control the impact of group-similarity loss.

Let us discuss the objective function of the discriminator.
MEG has a traditional discriminator component that distin-
guishes between fake and original datum. Note, the input
for discriminator D is shaped with [Ddata, Yd = 1] and the
synthetic data [Sdata, Yd = 0]. It aims to maximize: P(Yd =
1|Ddata) = D(Ddata), and P(Yd = 1|Sdata) = 1 − D(Sdata).
The discriminator in MEG has similar function as GANBLR
but adds the corresponding hyper-parameter β, as it is added
in generator’s objective function in Equation 11. We modify
Equation 3 to write MEG’s discriminator’s objective function:

max
θdθdθd

β [logD(Ddata) + log(1−D(Sdata))] , (12)

where θdθdθd are the parameters of D. It can be seen that one can
control the value of β to control the influence of discriminator’s
network. On one extreme, one can set β = 0 – this will mean
that there is no discriminator, and only sampling from the
generator is used to generate samples.

C. MEG – Algorithm

The training of MEG requires to train the generator G’s
and the discriminator D’s parameters in turns. We combine
Equation 10 and Equation 12 to obtain the complete objective
function of MEG as:

min
θgθgθg

max
θdθdθd

α [LM ] + β [logD(Ddata) + log(1−D(Sdata))]

−
n∑

i=1

log(P(xi|x ̸=i))

(13)
The complete algorithm of MEG is provided in Algorithm 1.
In a total of Q iterations (epochs), the input to MEG is used
to train G, while fixing the discriminator D. Afterward, the
discriminator D is trained to discriminate between the synthetic
and real datasets while fixing Generator’s parameters.
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Algorithm 1: Algorithm MEG

Input : Original data - Xg ∈ Rn, β, α
Output : Synthetic data - X̄g

1 for iteration q ⊂ Q in training do
2 Sample m instances (Xg) ∼ Pdata(.)
3 Construct the n mask of MEG
4 for version i ∈ n do
5 Train the θgθgθg for MEG with xi ∈ (Xg)
6 Obtain θgθgθg by optimizing G via Equation 10

with gradient descent
7 Generate Sdata via Equation 5
8 for step t ⊂ T in discriminator D do
9 Obtain θdθdθd by optimizing D via Equation 12

with gradient descent

10 return Sdata ≡ X̄g

IV. EXPERIMENT AND ANALYSIS

A. Experiment setup

1) Datasets: In this work, we use 11 commonly used
datasets – 10 from UCI dataset repository and 1 from Kaggle
— Loan. All these datasets have a specific dependent variable
and a set of independent features. Among them, 3 are large
datasets with more than 30K instances (denoted as Large), 4
are medium with less than 30K but greater than 10K instances
(denoted as Medium), while the other 4 with less than 10K
instances (denoted as Small). Their details are summarized
in Table I.

2) Baselines and Evaluation Metric: We compare MEG
with GANBLR, CTGAN, TVAE, TableGAN and CtabGAN.
Note, among the baselines, only CTGAN and TVAE do not
need the specification of the class attribute. While, other
baselines that requires the specification of the class attribute
during training do not offer a fair comparison, however,
the disadvantage lies with our proposed model MEG in this
comparison. A performance comparable (or better) to any one
these baselines, will demonstrate MEG’s efficacy.

All baseline methods are trained with 50 epochs for 3 Large
datasets, and 100 epochs for the Medium and Small datasets.
Each experiment is repeated 3 times with 2-fold cross validation,
and averaged results are reported. It can be seen from Table I
that many datasets have number of classes > 2, and hence,
we have reported the accuracy (instead of widely used auc
measure).

3) Configuration and Running Environment: The Bayesian
network in the generator model is constrained to naive Bayes
and in the discriminator, it is a simple logistic regression ([17]).

In Section IV-C, we will study the effect of varying the value
of β and α. This is to study a) the effect of group similarity
loss by varying α and b) to determine the effectiveness of the
adversarial (discriminator) component of MEG, by varying β.
MEG is coded in Python 3.7 in Tensorflow 2.5

framework, with 8 core Intel i8 CPU machine with 32 GB
RAM memory.

4) Synthetic Data Generation Evaluation: Let us assess the
efficiency of MEG in synthetic data generation in this section.
To do this, we will evaluate the effectiveness of MEG in terms
of:
Machine learning utility (MLU) – which reflects the quality

of the synthetic data. Machine learning utility refers to
the accuracy obtained from a machine learning model. To
fairly evaluate the tabular generators, we use the synthetic
data to train several commonly used classifiers such as
Random Forest (RM), XGBT, Logistics Regression (LR)
and also Mutli-layer Perceptron (MLP), and use the origi-
nal dataset to test the above-mentioned classifiers (TSTR).
For an effective data generation model, a high MLU on
TSTR is expected. The TRTR is for training and testing
on the original dataset only and used as the indicator
comparing with MLU on TSTR.

Statistical similarity – which measures the statistical similar-
ity between the synthetic and the real data. The statistical
similarity checks if the distribution of each feature from
synthetic data is similar to the original dataset. For an
effective data generation model, a high statistical similarity
is expected.

Privacy Preserving Capability – which measures the Eu-
clidean distance between any synthetic instance and its
closest corresponding neighbor from the original dataset -
DCR (Distance to Closest Record). We use DCR to measure
whether the synthetic data has too many repeated instances
from the original dataset.

Unsupervised Task Evaluation – which reflects the quality
of the synthetic data, particularly for unsupervised data,
i.e., data without ground truth on the label column. The
clustering method such as Kmeans is used to perform the
task on both the original data and the synthetic data. The
results of the unsupervised task evaluation should have 1)
excellent cluster separation and 2) similar cluster centre.

Both, machine learning utility and statistical similarity are
standard measures to determine the quality of data generation
algorithms [15]. Note, to the best of our knowledge, this is the
first work that studies the usefulness of tabular data generation
for unsupervised tasks such as clustering. All other evaluation
methods, in existing literature, focuses mostly on supervised
task such as classification.

B. Results Analysis

1) Results of Machine Learning Utility: The table II shows
the averaged accuracy on Large, Medium and Small data
sets. It can be seen that MEG outperforms all other basic
methods in terms of accuracy based on TSTR except GANBLR.
Especially on the small and medium data sets, MEG has a
significantly better performance than other baseline methods.

It is interesting to note that MEG’s TSTR performance is
close to that of GANBLR, while none of the other baseline
methods TSTR performance is close to that of GANBLR. It
can also be seen that the TSTR performance of MEG is also
close to that of TRTR performance, which is the upper limit of
accuracy. It is important to note that MEG has almost similar
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Figure 3: MLU comparison of MEG and competing baseline models on different sized datasets in terms of box-plot (Figure seen best in color).

Table I: Description of datasets.

Dataset m n C Size
Pokerhand 1M 11 10 Large
Shuttle 58000 9 7 Large
Adult 50000 14 2 Large
Chess 28056 6* 7 Medium
letter_rocog 20000 16 26 Medium
Magic 19020 11 2 Medium
Nursery 12960 8 5 Medium
Sign 6500 8 3 Small
Satellite 6435 12* 7 Small
Loan 5000 13 2 Small
Car 1728 6 2 Small

M denotes million. m, n, C denote the number of instance,
features and number of classes, respectively. *Dimension reduction
has been applied.

Table II: Average Machine Learning Utility comparison of MEG and
competing baseline models on different-sized datasets.

Method

L˜Accuracy% M˜Accuracy% S˜Accuracy%
TRTR

80.84% 86.80% 84.62%
TSTR

MEG 78.99% 79.19% 75.41%
GANBLR 79.15% 80.10% 78.25%
CTGAN 75.31% 68.77% 60.01%
TVAE 76.61% 69.91% 64.34%
TableGAN 70.48% 62.49% 59.06%
CtabGAN 74.62% 64.05% 67.91%

performance to GANBLR on large and medium size datasets
(difference of 0.1% and 0.9% respectively) – it is only on small
datasets that MEG has worse performance than GANBLR, where
the difference in their performance is 2.84%. We attribute
this to the higher number of parameters to learn and train
in MEG than GANBLR – of course, more parameters require
more data – which is not possible on these small datasets. The
same results can be found in table III, which shows detailed
TSTR performance for all datasets. These results are very
encouraging, as they show that the synthetic data generated
by MEG, which does not use class labels, is either of similar
or better quality than that generated by any other SOTA data
generation algorithm that uses class information.

While Table II provides averaged results, let us look at the
distribution of accuracies for different datasets. In Figure 3,
we plot the box plots of the (TSTR) accuracy of MEG and its
baseline methods on 4 machine learning algorithms. Again, we

Table III: Machine Learning Utility on all datasets in TSTR

Dataset Model MEG GANBLR CTGAN TVAE TableGAN CtabGAN

Pokerhand

LR 0.579 0.583 0.469 0.498 0.471 0.501
MLP 0.585 0.588 0.435 0.501 0.39 0.512
RF 0.572 0.572 0.502 0.522 0.41 0.519
XGBT 0.580 0.5837 0.511 0.517 0.423 0.502

Shuttle

LR 0.987 0.996 0.951 0.960 0.927 0.945
MLP 0.982 0.993 0.972 0.976 0.912 0.937
RF 0.993 0.9931 0.967 0.982 0.929 0.952
XGBT 0.994 0.996 0.980 0.981 0.92 0.961

Adult

LR 0.778 0.74 0.787 0.791 0.757 0.787
MLP 0.803 0.812 0.831 0.837 0.761 0.769
RF 0.812 0.816 0.792 0.812 0.783 0.797
XGBT 0.813 0.831 0.839 0.816 0.775 0.773

Chess

LR 0.806 0.828 0.693 0.706 0.722 0.717
MLP 0.835 0.835 0.673 0.699 0.735 0.718
RF 0.859 0.855 0.701 0.711 0.714 0.722
XGBT 0.831 0.851 0.723 0.702 0.751 0.737

Letter_recog

LR 0.718 0.689 0.531 0.597 0.462 0.47
MLP 0.719 0.739 0.601 0.612 0.392 0.512
RF 0.717 0.713 0.566 0.598 0.452 0.507
XGBT 0.722 0.736 0.539 0.608 0.478 0.553

Magic

LR 0.752 0.782 0.656 0.671 0.641 0.661
MLP 0.782 0.789 0.672 0.659 0.632 0.693
RF 0.783 0.803 0.698 0.681 0.665 0.691
XGBT 0.792 0.812 0.681 0.675 0.632 0.706

Nursery

LR 0.835 0.852 0.793 0.802 0.678 0.819
MLP 0.831 0.833 0.839 0.811 0.681 0.805
RF 0.833 0.835 0.802 0.823 0.676 0.792
XGBT 0.856 0.859 0.836 0.829 0.688 0.795

Sign

LR 0.567 0.61 0.472 0.501 0.482 0.529
MLP 0.588 0.649 0.479 0.498 0.473 0.511
RF 0.583 0.61 0.4563 0.489 0.491 0.512
XGBT 0.581 0.636 0.489 0.482 0.499 0.498

Satellite

LR 0.832 0.85 0.496 0.642 0.502 0.625
MLP 0.817 0.887 0.502 0.652 0.492 0.588
RF 0.826 0.879 0.51 0.717 0.511 0.602
XGBT 0.815 0.89 0.499 0.656 0.502 0.581

Loan

LR 0.783 0.772 0.706 0.713 0.756 0.766
MLP 0.789 0.801 0.683 0.708 0.762 0.752
RF 0.811 0.816 0.731 0.711 0.757 0.786
XGBT 0.789 0.822 0.739 0.721 0.759 0.773

Car

LR 0.811 0.815 0.713 0.733 0.62 0.711
MLP 0.823 0.823 0.686 0.757 0.59 0.722
RF 0.825 0.829 0.719 0.751 0.621 0.705
XGBT 0.826 0.831 0.721 0.761 0.633 0.711

Average 0.7776 0.7915 0.6736 0.7016 0.6343 0.6869

Table IV: Comparison of Statistical Similarity measure of MEG with
competing baseline models.

Method Large Medium Small
JSD WD JSD WD JSD WD

MEG 0.193 0.679 0.361 0.682 0.366 1.103
GANBLR 0.161 0.669 0.369 0.690 0.358 0.963
CTGAN 0.153 0.663 0.367 0.692 0.365 0.910
TVAE 0.171 0.681 0.372 0.701 0.363 0.957
TableGAN 0.212 0.731 0.377 0.663 0.351 1.460
CtabGAN 0.180 0.705 0.372 0.725 0.393 1.025

break the results in Large, Medium and Small datasets. It
can be seen that no matter the size of datasets, MEG significantly
outperforms all the baseline methods. Especially, for Medium
and Large datasets, the performance of MEG is extremely
impressive.
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Figure 4: Illustration of the privacy preserving with machine learning
utility for different sizes of datasets.

2) Statistical Similarity: To quantitatively measure the
statistical similarity between the real and the synthetic datasets,
we use Jensen-Shannon Divergence (JSD) and Wasserstein
Distance (WD). To obtain JSD results, for a dataset, each
feature from synthetic dataset is measured against the same
feature in the real dataset in terms of JSD. We repeat the
process for all features, and for all datasets, and then, report
the averaged result in Table IV – which can be seen as the
measure of statistical similarity between synthetic and original
dataset.

It can be seen from Table IV, that MEG stands out when
compared to the other baseline methods. If it is not the best,
it is always the second best. Delving into why MEG has sub-
optimal results in some cases – we believe that this could be
due to MEG’s generator – collection of Bayesian Network have
ability to generate some feature combination that are rarely
seen in the real dataset. In the real dataset, the ground truth
of the label information is given, however, during the training
of MEG, each feature will take turns to be a parent. Therefore,
statistical similarity perforamance of MEG based on JSD and
WD can be impacted.

3) Privacy-preserving Capability Analysis: One of the most
important uses of synthetic data is to protect the privacy of
training data. data privacy. In many applications, the original
training data cannot be directly used for training the model,
therefore the synthetic data generated by each of the table
generators must have a strong privacy preserving capability.
Here, we use a distance-based metric (DCR) to quantify the
privacy preserving capability of a model. Following the last
experiment on statistical similarity, if the mean DCR distance
between the original and the synthetic data is too large, it
simply means that the quality of the generated data is poor.
On the other hand, If the distance between the original and
synthetic data is too small, it simply means that the quality of
the it simply means that there is a risk of sensitive information
from the training data. Therefore, the ideal data generation
model should make the machine learning utility on TSTR as
large as possible, and also make the privacy distance DCR
relatively large.

Figure 4 compares models in terms of MLU performance in
terms of TSTR and privacy preserving performance in terms
of DCR. It can be seen that both MEG and GANBLR are better
than all other methods, with MEG slightly better than GANBLR
in terms of DCR. (red point higher than green point on the

Figure 5: Illustration of the unsupervised evaluation with Kmeans
for original and synthetic data.

y-axis). The slightly better performance of MEG compared
to GANBLR can be attributed to its ensemble collection of
Bayesian networks. Of course, it is possible to generate samples
that are more diverse and different from the original data.

4) Unsupervised Data Evaluation: Of course, the MLU
evaluation based on TSTR requires the ground truth, e.g.,
the label information in the data. However, when clustering
performance is evaluated, and no ground truth is present, MLU
evaluation is not applicable. In this experiment, we conduct
the unsupervised data evaluation by comparing the clustering
performance. There are 150 instances in the training data with 2
features which are artificially generated. Afterward, we use MEG
to generate the synthetic data, and use the KMEANS [18] to
cluster the original data and synthetic data with the same
amount of clusters (k = 3). The results of the clustering are
shown in Figure 5. It can be seen from Figure 5, both original
data and synthetic data have impressive (yet similar) clustering
results. The centre of the KMEANS clusters between original
data and synthetic data are almost the same. Moreover, the
synthetic data generated from MEG has been very well separated
from the centers. The results from Figure 5 shows that the MEG
can not only have superior performance on machine learning
utility (MLU), but also excellent performance on clustering tasks
for the unsupervised datasets. Note, GANBLR is not applicable
in this scenario, as it is supervised in nature.

C. Ablation Study

To illustrate the impact of hyper-parameters α and β on
MEG, we conducted the ablation studies of MLU by changing
the configuration of α and β in MEG as below:
α = 0.1 and β = 0 As we discussed in Section III, when the

α = 0 and β = 0, it means the MEG does not include
the discriminator part and the generator has a slightly
simplified objective function – i.e., it is trained solely by
maximizing log(P(xi|x ̸=i)) and group-similarity metric
loss (LM ) only, as shown in Algorithm 1.

α = 0.001 and β = 1 In this experiment, MEG will have a
quite minor impact from the group similarity metric loss
(LM ). Therefore, it relies on the discriminator to control
the quality of the synthetic data as well as: log(P(xi|x ̸=i))
component of generator.

α = 0.01 and β = 1 In this experiment, MEG will have a
standard impact from the group similarity metric loss
LM . It is the default setting of the hyper-parameters.
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Table V: Ablation study on α and β of MEG.

Hyper-parameters Impacts L˜TSTR M˜TSTR S˜TSTR
α = 0.1 and β = 0 MEG does not have discriminator 72.15% 73.22% 70.87%

α = 0.001 and β = 1 MEG is barely impacted by metric loss LM 77.59% 78.31% 73.87%
α = 0.1 and β = 1 Default setting for MEG 78.99% 79.19% 75.41%
α = 10 and β = 1 MEG is largely impacted by metric loss LM 73.35% 73.12% 70.86%

Table VI: Ablation study on similarity measurement of MEG

Similarity Measurement L˜TSTR M˜TSTR S˜TSTR
Euclidean (default) 78.99% 79.19% 75.41%
Cosine with LSH 78.01% 79.33% 75.43%

α = 10 and β = 1 In this experiment, the generator in MEG
is largely impacted by the metric loss LM .

We compare the performance of MEG with each of the above
settings using the similar strategy that we used to compare
MEG with other competing baselines on the MLU performance.
It can be seen from Table V that the default setting (β = 1 and
α = 0.1) of MEG has better average performance than all other
settings, especially on large datasets. Particularly, Table V also
highlights the significance of parameter β in MEG formulation.
Without having β, MEG has the worst performance compared
to all other settings.

Let us re-visit Table V to see the impact of α. When the
value of α is relatively small at 0.001, the results of TSTR
have a minor difference with α = 0.1 (default setting). Well
clearly, it can be seen that higher values of α leads to worse
results for small and medium datasets. It is because when
α = 10, the metric loss LM dominates the objective function
(Equation 13), which can lead to an inaccurate sampling – as
parameter θgθgθg may not be learned well.

To find out the performance of MEG on different similarity
measures, the ablation study is conducted between the default
Euclidean distance and Cosine similarity with local-
sensitive-hashing (LSH). It can been seen from Table VI that
there is not a huge difference between in the performance of
two measures, with approximate measure almost as good as
the exact measure. This speaks of the robustness of group-
similarity metric used in MEG. Needless to say – Cosine
with LSH can convert the quadratic nature of Equation 7 into
linear, which can greatly speed-up the data generation process.
We have not included the training time results due to space
constraints.

In the future work, we are interested to study incorporating
higher-order Bayesian networks, i.e., with more than 1 parent
(as is the cases in TAN). The applicability of work to fairness
enforcement and knowledge-guided and human-in-the-loop
learning is to be investigated as well.

V. CONCLUSION

In this work, we propose a new tabular data generation
model MEG, motivated by the need to address the shortcoming
of GANBLR in requiring class attributes during training. MEG
is based on a collection of Bayesian networks (in which
each attribute takes turns to be the class). This is efficiently
implemented by a masking operation followed by a group
similarity measure between the synthetic and the original data.

The group loss is used to derive the number of data points to
sample from each network. We demonstrated the effectiveness
of MEG by comparing its performance with standard models
such as GANBLR, CTGAN, TableGAN and CtabGAN. It was
shown that MEG leads to better performance than other baselines
(and similar performance to GANBLR). We discussed the
suitability of MEG for generating data for unsupervised tasks
such as clustering. Given the unsupervised nature of MEG, and
given that its performance is almost as good as GANBLR, we
characterise MEG as a significant contribution to the field of
ever-changing tabular data generation.
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