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Abstract

Large scale categorical datasets are ubiquitous in machine learning and the suc-
cess of most deployed machine learning models rely on how effectively the features
are engineered. For large-scale datasets, parametric methods are generally used,
among which three strategies for feature engineering are quite common. The
first strategy focuses on managing the breadth (or width) of a network, e.g.,
generalized linear models (aka. wide learning). The second strategy focuses
on the depth of a network, e.g., Artificial Neural networks or ANN (aka. deep
learning). The third strategy relies on factorizing the interaction terms, e.g.,
Factorization Machines (aka. factorized learning). Each of these strategies
brings its own advantages and disadvantages. Recently, it has been shown that
for categorical data, combination of various strategies leads to excellent results.
For example, WD-Learning, xdeepFM, etc., leads to state-of-the-art results. Fol-
lowing the trend, in this work, we have proposed another learning framework
– WBDF-Learning, based on the combination of wide, deep, factorization, and
a newly introduced component named Broad Interaction network (BIN). BIN
is in the form of a Bayesian network classifier whose structure is learned apri-
ori, and parameters are learned by optimizing a joint objective function along
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with wide, deep and factorized parts. We denote the learning of BIN param-
eters as broad learning. Additionally, the parameters of BIN are constrained
to be actual probabilities – therefore, it is extremely interpretable. Furthermore,
one can sample or generate data from BIN, which can facilitate learning and pro-
vides a framework for knowledge-guided machine learning. We demonstrate that
our proposed framework possesses the resilience to maintain excellent classifica-
tion performance when confronted with biased datasets. We evaluate the efficacy
of our framework in terms of classification performance on various benchmark
large-scale categorical datasets and compare against state-of-the-art methods. It
is shown that, WBDF framework a) exhibits superior performance on classifica-
tion tasks, b) boasts outstanding interpretability and c) demonstrates exceptional
resilience and effectiveness in scenarios involving skewed distributions.

Keywords: Low-bias Models, Large Categorical Datasets, Feature Engineering,
Interpretable Models, Discriminative Bayesian network Models

1 Introduction

Feature engineering is the key to building better machine learning models in the era
of big data [1], [2]. The ever-increasing volume of datasets in today’s world motivates
the need for building models with low bias, such that higher-order interactions among
features, if present – can be modeled correctly. Note, for larger quantities of data,
the variance component of the error tends to be zero, and the bias component is the
one that generally derives the error [3]. This is one of the reasons behind the success
of parametric models such as deep Artificial Neural networks (ANNd) models (d char-
acterizes the depth of the model), Higher-order Logistic Regression (LRn) models (n
characterizes the order of the features considered in the model, e.g., n = 1 for lin-
ear, n = 2 for quadratic, etc.), Factorization Machine (FMm) models (where like n in
higher-order logistic regression, m characterizes the order of the features considered
in the model, e.g., m = 1 for linear, m = 2 for quadratic, etc.), and non-parametric
models such as Random Forest (RF) [4], Gradient Boosting Decision Trees, (GBT)
etc. [5]. Generally, for large-scale datasets, parametric methods are preferred as non-
parametric methods like GBT require loading entire data into the memory. ANNd relies
on the strategy of adding layers to build deep models, which gives them the capacity
to engineer features. We refer to this form of learning as deep-learning 1. Generalized
Linear Models (GLM), represent another category of parametric models which have
been proven to be effective for large datasets, though computationally inefficient [5].
We refer to this form of learning as wide-learning, as the model complexity can be
controlled through the width of the input layer. In general, capturing higher than
quadratic-level interactions is a challenge for such models. FMm represents the latest
category of parametric models, which relies on factorizing the interaction among the
variables such that the obtained final non-linear model is linear in the input parame-
ters [6]. Factorization Machines and its variants have been the models of choice when

1Various layers of ANN (e.g., dense, convolution, recurrence) serves as feature engineering modules for
modeling higher-order feature interactions and hence leading to a low-bias model.
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learning from extremely large quantities of categorical datasets. We refer to this form
of learning as Factorized-learning.

It has been shown that for large-scale categorical data, combination of various
strategies leads to excellent results. E.g., WD-Learning is an end-to-end framework
combining wide and deep learning [7]. xdeepFM, the existing state-of-the-art (SOTA)
model, is the combination of deep and factorization strategies [5]. However, these
frameworks do have some drawbacks:

• Capturing higher-order interactions in the model can be difficult. E.g., in the case
of WD-Learning, for moderate-size datasets, obtaining all possible cubic or higher-
order features is next to impossible. Most state-of-the-art (SOTA) models rely on deep
component to engineer higher-order features.

• Existing SOTA frameworks have limited interpretable capabilities. Though one can
interpret the parameters of the wide part, since the parameters are free parameters
(and not probabilities), interpretation can be difficult. Any form of interpretation
in models such as xdeepFM is not possible.

• The incorporation of human knowledge is quite limited. For example, one can make
use of prior knowledge that some feature combinations never occur – leading to a
form of feature selection, but this is limited to order-1 or order-2 features only in WD

learning. Incorporation of such knowledge is not possible in xdeepFM.
• Learning from biased datasets can be challenging for existing state-of-the-art (SOTA)
frameworks. In fact, there is no mechanism in these frameworks that mitigate or
eliminate the impact of bias present in the dataset.

How to obtain SOTA model with the capabilities of a) constructing higher-order
explicit features, b) superior interpretability, and c) knowledge-guided learning for
bias correctness and other related benefits has been the main motivation of this work.

How can one incorporate knowledge in machine learning models? Well, a simple
solution is that of the Bayesian network. A Bayesian network is a directed acyclic
graph, that depicts the dependence of features in a problem. The model is excellent for
incorporating expert knowledge, which is generally done through the specification of
the structure of a Bayesian network, as well as related probabilities. Bayesian networks
are also super-interpretable, and we will discuss later that they can also formulate
higher-order interactions, hence leading to a framework that can incorporate cubic or
higher-order interactions easily. Moreover, since the Bayesian network can sample and
generate synthetic data, knowledge-guided learning is achievable as one can repeatedly
sample a desirable dataset (e.g., an un-biased dataset) during or prior to training.

So, are Bayesian networks a panacea? Well, the assumptions encoded by the struc-
ture of the Bayesian network can be incorrect, which can limit the efficacy of the
model. A wide or deepmodel, on the other hand, has fewer assumptions than Bayesian
network 2. How can one get the benefits of both Bayesian networks as well as wide

and deep learning? A simple strategy is that of the ensemble, where Bayesian net-
works, wide and deep constitute individual models. In fact, ensembling of disparate
models has a long history in machine learning [8] and has shown to be quite effective.

2A wide model has all possible order-n terms, and a deep model given sufficient depth (d) can be a
universal approximater.
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One drawback of ensembling is that the individual models are trained separately and
their collaborations only occur when combining their predictions. Is there a way, we
can integrate Bayesian networks with wide and deep models in a single model within
an end-to-end learning framework (i.e., avoiding ensemble strategy)? In the following,
we will show that we can do this by learning the parameters of Bayesian networks by
optimizing a similar loss function that is typically optimized by wide and deep mod-
els. This will provide us a way to integrate Bayesian network with other parametric
models including not only wide and deep, but also factorized models as well.

In this work, we denote a Bayesian network that is trained by optimiz-
ing conditional log-likelihood (a discriminative objective function) as Broad

Interaction network (BIN). Of course, the parameters of BIN are constrained to be
actual probabilities, and once they are learned, they allow the importance of high-
order feature interactions to be observed clearly, which adds interpretable capabilities
to the model 3. In this work, we have proposed a new framework that integrates BIN
with wide and deep models. To the best of our knowledge, this is the first work that
integrates Bayesian networks in an end-to-end fashion in a deep learning framework.
The model is designed to be applied to extremely large categorical data. One property
of categorical data is that they can be extremely sparse. For example, a city feature
can be a list of all the cities in the world and can be either 1 or 0. It has been shown
that on these sparse categorical datasets, factorized models, e.g., Factorization
Machines can be quite effective, as they can leverage the present values to learn a
weight for values that are not present in the data. Therefore, to better model categor-
ical data, we have proposed to integrate BIN with not only wide and deep models, but
also with factorized model resulting in our proposed framework wide, broad, deep
and factorized learning (WBDF-Learning framework). The term broad denotes the BIN

component of the framework and learning the parameters of BIN is denoted as broad
learning.

About the term ‘Broad’ – The term broad learning has been introduced before
in [10], where it is described as fast and accurate learning without a deep structure
and is different to our work. On the other hand, terms Wide, Deep and Factorized

learning are well-known terms in machine learning. To define broad-learning, let us
formalize wide learning first. The term wide is used in machine learning research
for models such as quadratic, cubic or higher-order linear or logistic regression. The
term was first used in [7], where authors proposed an ensemble of quadratic logistic
regression and deep learning models. They characterized quadratic logistic regression
as a wide model. We define wide learning as:
Definition 1. Wide Learning incorporates learning with all possible n-level interaction
features in the data.

Based on the above definition, LRn is a form of wide learning. We define broad-
learning as:
Definition 2. Broad Learning incorporates learning with a subset of all possible n-
level interaction features, where the subset is either specified by an expert, obtained
based on some pre-specified metric or learned from another data source.

3Note, in BIN, one can interpret the model parameters during the training as well. This is in contrast to
LIME [9] – another popular interpretation method widely used in industry, which offers only the post-training
explanation.
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Based on the above definition, BNk is an example of broad learning. Another
example of broad learning is higher-order feature selection based on measures such
as mutual information [11], followed by a simple linear model.

On the inclusion of both ‘Wide’ and ‘Broad’ Components – As we discussed
earlier, Broad learning such as BIN is not a panacea, and subset of feature-interactions
selected by the model can be incorrect (after all, we are using some metric to select a
subset of interactions from all possible interactions). The main benefit of using Broad

learning is because of its ability to scale to higher feature interactions. However, the
inclusion of wide component can result in better results, of course at the expense of
the computational cost of the size of the model. Typically, we can afford a smaller wide
part and a much bigger broad part.

On the interpretability of prediction in WBDF Framework – We will see
that only the BIN component in our framework is interpretable, however, all the four
components contribute to the prediction. So the interpretability that we get from BIN

depends on how much the broad component is contributing to the actual predic-
tion. We will show later in the experiments that the performance and contribution of
the broad component is usually higher than the other components. Secondly, we will
be using the attention layer that is built on top of the output of each component. This
layer is also interpretable and one can easily determine the contribution of each of the
components, and the interpretation analysis can be based on how relevant broad com-
ponent is in the overall prediction. In summary, much of the interpretation capability
of WBDF is due to its broad component, as well as attention mechanism. Attention
can help in interpreting the extent of broad component in final prediction, whereas
each of the parameter of BIN can be interpreted to determine the contribution of
each feature. Of course, explaining model’s output in terms of all four components,
i.e., wide, deep, factorized and broad is highly desirable, but is a challenging
endeavour – one that is left as a future direction of this work.

On knowledge-guided learning of WBDF framework – In the last few years,
knowledge-guided machine learning has gained a lot of traction [12]. The idea is to
facilitate traditional learning by incorporating additional/auxiliary information (or
knowledge) about the problem during the training stage. It has been shown that
inclusion of such knowledge can improve traditional machine learning models. E.g.,
one strategy is to obtain a physical model of the process under study and obtain
some additional data based on this physical model – the obtained data is used in
conjunction with existing training data. The additional information that is present
in this newly obtained data can improve classification but it can also correct for any
bias that is present in the original data. E.g., a bank computing the credit score of
its customer might be faced with data that consists of customers only from one city
– however, as part of knowledge-guided machine learning, they can generate data
for other cities which can mitigate some effects of bias. In WBDF framework, as we
mentioned earlier, BIN has an advantage, that it can be trained prior with sufficient
data, hence acting as the knowledge system. This is equivalent to structure learning
of the Bayesian network, where a human in the loop can help specify or verify the
structure of the network. Now, one can sample from this model, and the resulting data
can be used in augmentation during the training of WBDF. In a nutsell, by leveraging the
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BIN’s sampling function capability, we can learn and train with some expert domain
knowledge, generate additional data through sampling, expand the original (biased)
dataset, and ultimately improve classification performance.

On the importance of Bayesian network structure – No doubt, BIN is an
important component of our proposed WBDF framework. What if the assumptions
encoded by the Bayesian network in BIN are incorrect? Well, structure learning is a
crucial aspect of BIN, and it is important that a correct (or a desirable) structure is
specified. In this work, we have constrained ourselves to restricted Bayesian network
structure learning, i.e., a structure is learned prior to learning the parameters of BIN
component. Note, a restricted Bayesian network uses information such as mutual infor-
mation or conditional mutual information to determine the structure, such as TAN [13]
or KDB [14], etc. This structure has shown to be extremely effective, leading to a scal-
able model which leads to state-of-the-art results on massive datasets [15]. How to
incorporate structure learning with-in BIN is a challenging problem. There are several
recent advances such as [16] and [17] in structure learning, that we believe can be
integrated in BIN. However, this is left as a future work.

The contributions of this work are as follows:

1. We propose an elegant framework that constitutes Wide, Broad, Deep

and Factorized components, to obtain a low-bias model for large volumes of data.
The integration is done through an interpretable Attention mechanism.

2. By comparing on two standard CTR prediction datasets, 10 large categorical
datasets and two synthetic datasets, we demonstrate that the WBDF-Learning frame-
work has better performance than SOTA models such as FNN, CrossNet, xdeepFM,
etc., as well as superior training time and a faster convergence profile. On stan-
dard CTR dataset Criteo, our method leads to state-of-the-art results based on the
experimental settings in [18].

3. We study WBDF framework under knowledge-guided learning scenario. Under this
scenario, BIN is used to sample a new dataset to correct for some artificially intro-
duced bias. We compare the performance of vanilla WBDF and WBDF with bias
correction through data sampling capability of BIN.

4. We evaluate the interpretability of our model and demonstrate its effectiveness by
comparing it with the popular LIME model.

The rest of the paper is organized as follows. We will discuss related work in Section 2,
and then present the proposed learning framework in Section 3. The experimental eval-
uation of our proposed framework is conducted in Section 4. We conclude in Section 5
with pointers to future works.

2 Related Works

WD-Learning is the classical hybrid model, which achieves both memorization and
generalization in one model by jointly training a wide linear model component and a
deep neural network component [19].

FNNmodel is a variant of Factorization Machines (FM) model, and can be considered
as an FM-initialized ANN [20]. The idea is simple – an FM which is trained prior to
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Fig. 1: Illustration of the WBDF framework.

training an ANN, is used as the representation of each categorical feature in the data.
The structure of FNN allows the bottom layer to exploit spatially local correlation
among the features. The supervised-learning embedding layer within the FNN using
factorization machines reduces the dimension from sparse features to dense continuous
features. After the embedding layer, multiple dense layers are built.

DeepCrossNet (DCN) [21] has a slightly different architecture compared to FNN.
The CrossNet (cross-network) component in DeepCrossNet intends to explicitly gen-
erate higher-order feature by a cross operation, which is a special type of higher-order
feature interaction by having the hidden layer output as the scalar product of the input
layer. Repeated hidden layers can conduct the higher-order interactions according to
existing ones and preserve the interactions from previous layers. Then the output
of CrossNet is concatenated with a dense ANN to obtain the final prediction as DCN.

xdeepFM [5] is the recent SOTA model which achieves the most accurate perfor-
mance. It has two levels of feature interaction namely, bit-wise and vector-wise.
The bit-wise is the feature interaction that happens on the value of the feature
directly, whereas, the vector-wise is the feature interaction that happens on the
dimension of the feature matrix. The interacted object in vector-wise feature inter-
action is not the single value of the feature but the vector from the embedding matrix
of the feature. The Compressed Interaction network (CIN) is the main component that
can handle the vector-wise interaction. The xdeepFM combines ANN with an explicit
vector-wise fashion compressed interaction network to learn the higher order features.
It can be seen that xdeepFM is based on CrossNet but at a bit-wise level operation,
and it applies the feature interaction at the vector-wise level.
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3 WBDF Learning

Our proposed WBDF framework is composed of wide, deep, factorized and broad

components, followed by an Attention layer, resulting in an effective yet interpretable
end-to-end system. An overview of the entire framework is given in Figure 1. In the
following subsections, let us discuss various components of the framework.

3.1 The Wide,Deep and Factorized Components

The wide component of WBDF-Learning framework is simply a linear model with the
form:

Owide(y|x) = σw(W
⊤x̃+ c), (1)

where σw denotes the Softmax for the Wide component. The parameter W is the
parameters of the wide network, and c is the bias term 4. The input data x̃ is the
transformed features from the input features – x. The cross-product features that are
computed can be expressed as: x̃ = ϕ2(x) =

∏p
i=1

∏p
j=i[xixj ], where ϕ2(.) represents

a quadratic transformation of the input data. In general, the wide part can be as wide
as possible, e.g., an order-n transformation can be written as:

x̃ = ϕn(x) =

p∏
i=1

p∏
j=i

· · ·
p∏

k=n−1

[xixj . . . xk]. (2)

As discussed in Section 1, going beyond n = 2 is not trivial on even moderate-size
datasets, as it significantly increases the time and space complexity. In our proposed
formulation of WBDF-Learning, the usage of the wide component is limited to n = 2,
similar to other SOTA frameworks. Note that the feature transformation of Equation 2
is preceded by discretization of numeric features, leading to all categorical features in
the dataset. Therefore, xixj . . . xk denotes the cross-product of n categorical features.

The Deep component of our WBDF-learning framework consists of a typical feed-
forward deep neural network with the input embedding vector x̂. An embedding of each
input feature is learned as part of the network, hence we define this transformation of
input features as: x̂ = ΦEmbedding-Layer(x). In general, the Deep component can be as
deep as possible, e.g., a depth-d network can be defined as:

Odeep(y|x) = σd(D
dhd−1). (3)

Here σd denotes the activation function at layer d, and Dd denotes the parameters
to be learned at that layer. hd denotes the output of the hidden layer d 5. Just
like the wide component, the input data is first discretized leading to all categorical
features in the data. Note that typical ANN can handle numeric features. However, for
leveraging embedding layers in ANN and to be consistent with the wide component,
deep component of our WBDF framework takes only categorical features.

4Note, in the following discussion, we will subsume parameter c in W for sake of simplicity.
5Note, generally deep models have several other layers such as batch-normalization, dropout etc., and we

have only shown dense layers here.
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A typical factorized model takes the following form:

P(y|x) = σf (

p∑
i=1

p∑
j=i+1

⟨F 2
i , F

2
j ⟩xixj +

p∑
i=1

F 1
i xi + c).

Here, F 1 and F 2 denotes the linear and quadratic parameters of the model. However,
our WBDF framework relies on the recent advancements in factorized learning, and
utilize Compressed Interaction network (CIN) from [5], which performs a layer-wise
operation on the data to obtain feature maps:

xk
h,∗ =

Hk−1∑
i=1

p∑
j=1

F k,h
i,j (xk−1

i,∗ ◦ x
0
j,∗).

Note, p denotes the number features, 1 ≤ h ≤ Hk and Hk denotes the number of
embedding feature vectors in k-th layer. Precisely, k-th layer here indicates the k-th
hidden layer of the CIN and the k ∈ [1,m]. In rest of the paper, we donate the m as

the total layer size in CIN. The features maps are then pooled as: pki =
∑D

j=1 x
k
i,j for

i ∈ [1, Hk], where D is the dimension of embedding. A pooling vector of size Hk is
generated as: p = [pk1 , . . . p

k
Hk

] for layer k, and for all layers as: p+ = [p1, . . .pT ]. Here
T denotes the depth of the network or the number of layers. We write the factorized
component in WBDF as:

Ofact(y|x) = σf (F
op+), (4)

where σf denotes the Softmax, and F o are its parameters.

3.2 The Broad Component

We denote the broad component of our model as Broad Interaction network (BIN).
It is based on a restricted Bayesian network and exploits the trick of [22] by learning a
separate set of parameters (B in our framework) by optimizing a discriminative objec-
tive function, i.e., conditional log-likelihood (CLL). This discriminative training
of parameters gives us the capability to use a Bayesian network alongside a Wide and
Deep components in an end-to-end system. A Bayesian network is a directed acyclic
graph. There are two component of a Bayesian network – structure and the parame-
ters. The first stage of Bayesian network involves structure learning, which is followed
by parameter learning. Structure learning incorporates learning the structure that is
a directed edge is added among the features of the dataset. Structure learning prob-
lem comprises of adding, deleting and reversing edges such that some criteria score is
optimized. Such approaches to structure learning are called un-restricted approaches.
Restricted approaches on the other hand rely on simple heuristics such as mutual infor-
mation or conditional mutual information to determine an optimal structure. In BIN,
the structure is learned via an un-restricted structure learning. In a way – BIN has no
control over the structure learning (the structure is given to BIN), it only plays the
role of the second stage of Bayesian network learning – i.e., the parameter learning.
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What does the parameters of Bayesian network look like? Well, let us make use of
over-parameterization trick of [22], and define our Bayesian network (broad) model as:

Obroad(y|x) ∝ θbyy

p∏
i=1

θ
bxi|y,Πi(x)

xi|y,Πi(x)
, (5)

which is parameterized by two set of parameters: b. ∈ B and θ. ∈ Θ. The sub-
script xi|y,Π(x) denotes the parameters correspond to following feature interaction:
attribute i, class attribute with value y and set of attribute values returned by func-
tion Π(). Note, Π() is a function that return the parents of each attribute based on
a Bayesian network’s structure, and it can be seen that we have been able to learn
a weight for various high-lever interactions in the data. Note, structure learning of
Bayesian network is basically the specification of Π() function, where we specify the
parents of each attribute. In structure learning, one can limit the maximum number
of parents an attribute can take. This is specified by the parameter k that controls
the complexity of the model.

Now that we have established the structure learning component of Bayesian net-
work in Equation 5, let us focus on the parameter learning in Equation 5. There are
two set of parameters – Θ and B. The parameter Θ constitutes of parameters which
are learned by optimizing the log-likelihood (LL) of the data, and hence are equal to the
actual empirical probabilities. The parameter Θ can be called as the generative param-
eters. The parameterB is optimized by optimizing the conditional log-likelihood (CLL),
and often described as the discriminative parameters. The parameter B is optimized
as part of (discriminative) training of BIN in WBDF framework. Important to note that
unlike Θ, which are set of probabilities – the parameter B is not constrained, and can
take on any value. We can write conditional probabilities in succinct form as:

Obroad(y|x) = σb(B
T logΘ). (6)

where σb denotes the Softmax. Again, Θ in Equation 6 is a generative parameter
and is learned prior to training a BIN, whereas, B is a discriminative parameter and
is learned by optimizing the objective function of WBDF, i.e., learned alongside the
parameters of wide, deep and factorized models.

It can be seen that Equation 6 is over-parameterized. Rather than learning the
parameter Θ apriori, by optimizing the LL objective function, we can learn it by
optimizing the CLL objective function instead. Note, the parameter Θ are actual prob-
abilities, and therefore, one will have to enforce the probability constraints during
the optimization. The conditional probabilities in this case represent a slight variant
of Equation 6, and we define it as the output of our Broad Interaction network,
which differentiates our formulation with that of [22]:

Obroad(y|x) = σb(logΘ), (7)

with Θ satisfying probability constraints.
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Fig. 2: Illustration of the Broad Interaction network with weight constraints.

Now, Θ in Equation 7 is a discriminative parameter and is learned by optimizing
the objective function of WBDF, i.e., learned alongside the parameters of wide, deep
and factorized models.

One can use BIN in our framework by either optimizing Equation 6 or 7. Note,
these two variants lead to similar results (in terms of the classification performance)
as we show later in ablation studies, but optimizing Equation 7 leads to slower training
time as it maintains the probability constraints over its parameters. It, however, leads
to lesser number of parameters in the model, with an easy interpretation of parameters
to be optimized, i.e., Θ – and hence is used as the default setting.

3.3 WBDF Training

WBDF learning framework offers an elegant combination of Wide, Broad, Deep and
Factorized components, in which the parameters of each component are trained in
an end-to-end fashion. Our joint optimization will update the weights of all four com-
ponents simultaneously connected together via Attention layer, by back-propagating
the error while optimizing a single objective function. The use of Attention in WBDF

is motivated from its enormous success in NLP and related domains and serves two
purposes:

• Firstly, the Attention layer before the final output layer can provide the component-
level interpretation. And, therefore, the importance of each component in WBDF can
be easily determined.

• Secondly, the Attention can work as the gate for controlling the influence of dif-
ferent components during the training. Therefore it automatically decides which
component to trust more and hence wight more in order to optimize the objective
function.

We define the Attention layer in WBDF framework as:

z = Owide(y|x)⊕Obroad(y|x)⊕Odeep(y|x)⊕Ofactorized(y|x),
ỹ = Softmax(RELU(h.z+ h0)), (8)
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Algorithm 1 WBDF Algorithm

Input : D, n, k, d,m
Output: Learned W,B,F,D,Θ, h

1 Discertize numeric features in the data.
2 Compute MI and Conditional MI on the D and learn the structure of Bayesian

network.
3 Initialize W,B,F,D,Θ, h to appropriate initializers.
4 for iteration k ⊂ K do
5 Calculate Owide(y|x) ; // Equation 1

6 Calculate Odeep(y|x) ; // Equation 3

7 Calculate Ofactorized(y|x) ; // Equation 4

8 Calculate Obroad(y|x) ; // Equation 7

9 Calculate ỹ ; // Equation 8

10 gk ← ∇W,B,F,D,Θ,hL(y, ỹ)
[Wk+1,Bk+1,Fk+1,Dk+1,Θk+1, hk+1] ← [Wk,Bk,Dk,Θk, hk] + ηgk ;
// η:StepSize

11 end
12 return W,B,F,D,Θ, h

where ⊕ denotes concatenation and h and h0 denotes the parameters of the Attention
layer Based on Equation (8), the objective function of WBDF-Learning framework can
be written as:

min
W,B,D,F,Θ,h

L(y, ỹ) = −(y log(ỹ) + (1− y) log(1− ỹ)), (9)

Here, L denotes the objective function – and is typically the cross-entropy loss, which
is optimized via standard gradient-descent based optimization algorithm such as adam
solver. Note, for sake of completeness, we have included both Θ, and B for broad

component. As we discussed in Section 3.2, one can learn Θ apriori, and can only
learn B (Equation 6) during the optimization of Equation 9. Other option is – one
can ignore B, and learn Θ only (Equation 7) during the optimization of Equation 9.

We present the pseudo-code of WBDF-Learning framework in Algorithm 1.

3.4 Knowledge-guided WBDF

Let us in this section discuss how WBDF can integrate knowledge-guided machine learn-
ing through its capacity to generate unbiased data. Note, knowledge-guided machine
learning is a vast area with many applications, however, we have only considered the
application of bias-correctness as a representative application in this work. As we men-
tioned earlier, deep, wide and factorized classification models do not possess the
capacity to correct for biased data – they can only be trained using the given (biased)
dataset. Therefore, with biased datasets, the training outcome of these models can be
sub-optimal. The usual remediation involves resorting to other generative models for
data augmentation outside the framework. Our broad component, however, presents a

12



Fig. 3: Illustration of knowledge-guided application of WBDF.

solution to generate data with-in the learning framework. This capability enables WBDF
to correct for the bias in original data by either learning Bayesian network structure
from another data source, or by involving an expert in the loop in structure learning
6. Afterward, the WBDF can be employed to fit the generated data – i.e., it is trained on
the mixture of the biased dataset along with the un-biased generated dataset. This is
illustrated in Figure 3 – where we show the framework of the WBDF under knowledge-
guided learning. Here, Original data signifies the comprehensive knowledge of the
entire domain, whereas Biased data represents the given biased training data. If
no Original data is present, another form of structure learning is through expert in
the loop – where a human expert can help learn the structure, from which data can
be sampled.

Unlike the proposed WBDF framework, when dealing with Biased data, the
broad component is trained using the complete domain knowledge, hence obtaining
a synthetic dataset – while wide, deep and factorized are trained with mix-
ture of Generated data and Biased data. The framework does this by setting
the is-learnable parameter for each component during the training process.

4 Experiments

In this section, we will empirically evaluate the efficacy of our proposed WBDF-Learning
framework by comparing its performance against other related methods on standard
datasets, as well as on synthetic datasets. In addition, we have constructed a contrived
knowledge-guided scenario featuring biased distributions and measured the lift on
accuracy afterwards.

In particular, we are interested in finding answers to the following research
questions:

6Note, in the experiments, we will use an ingenious strategy based on feature importance from tree-based
models, to generate bias data, as for most of datasets used in our work, we do not have the expert available
or presence of the un-biased version of the datasets.
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Table 1: Statistics of the Datasets

Dataset Instance features Class Source

Criteo 45M 39 2 CTR

Avazu 40M 23 2 CTR

Higgs 1M 28 2 UCI

Sussy 1M 18 2 UCI

KDD99 1M 41 5 UCI

NSL-KDD99 1M 41 5 UCI

Pokerhand-4 1M 9 8 Synthetic

Pokerhand-6 1M 13 8 Synthetic

Pokerhand 1M 11 10 UCI

Covtype 581K 55 7 UCI

Localization 164K 7 11 UCI

Adult 48K 14 2 UCI

• RQ1: How well does WBDF-Learning framework perform over different datasets when
compared to its individual components?

• RQ2: How does the proposed WBDF-Learning framework perform against other low-
bias SOTA models which rely on effective feature engineering, such as WD, xdeepFM,
etc. especially on CTR datasets.

• RQ3: What is the effect of introducing the broad component? E.g., what interpre-
tation capabilities does it bring?

• RQ4: What is the effectiveness of WBDF in knowledge-guided machine learning
scenario handling biased data?

Before embarking on the explanation of our results, let us start by explaining our
experiments settings.

4.1 Experiment Setup

We perform three different types of experiments. The first experiment tests the classi-
fication effect of our proposed WBDF model. For this we chose several datasets (details
of these datasets are given in Table 1). We have used a total of 12 datasets in
this work. Out of 12, there are 10 UCI datasets. There are two popular industry
bench-marking datasets Criteo and Avazu mostly used for click-through-rate (CTR)
prediction. Additionally, we have used 2 Synthetic datasets.

The second set of experiments study the interpretation of our proposed WBDF frame-
work. We have made use of one dataset from Table 1 – Adult – and compared the
interpretation of WBDF model with that of state-of-the-art model LIME.

The third set of experiments study the knowledge-guided capability of our frame-
work. For this, we have used four datasets from Table 1. Note, for each dataset, we
adopted several techniques to construct a biased dataset.
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4.1.1 On Creation of Synthetic Datasets

The two synthetic datasets are variants of Pokerhand dataset. The motivation for
synthesizing these two datasets is to create a dataset that requires a low-bias model.
We will use the performance of these two datasets to determine how effective the
model’s feature engineering capability is. Two synthesized datasets are based on
standard Pokerhand by following below 4 steps:

1. Version of the synthetic Pokerhand is specified.
2. Rules of each class for Pokerhand are identified. E.g., Full house is not available

for four-hand synthetic Pokerhand-4.
3. The cards with respective hands are uniformly sampled.
4. In each sampling round, the cards in hand are checked by the rule of each class

from Pokerhand datasets. Once checked, they are stored on other cards.

4.1.2 Methods used in Comparison

We compare with the following methods:

• W: High-order logistics regression (LRn) with n = 2.
• B: Discriminative k-dependence Bayesian classifier (BNk) with k = 3 [22].
• D: Deep Neural network (ANNd) with d = 3.
• F: Compressed Interaction network (CIN) [5] with a layer size of 3 (m = 3).
• LR: Typical logistics regression model [23] – a linear model, incldued only for bench-
marking.

• WD: Typical Wide and Deep model [7] with quadratic Wide component and a Deep

component with d = 3.
• xdeepFM: One of SOTAmethods for CTR prediction. Layer of size 3 is used with CIN.
• FNN: Factorization machine based artificial neural network [20], which incorporates
order-2 feature interactions.

• DCN: CrossNet model [21] with default size of cross-layer to be 3.
• WBDF: WBDF framework based on Algorithm 1. We use n = 2 for wide (wide
component is equivalent to W), d = 3 for deep (deep component is equivalent
to D) and m = 3 for factorized (factorized component is equivalent to F).
The broad component k is set to 3 for all datasets (unless stated otherwise), note
broad component is equivalent to B.

• ONN [24], FiBiNet [25] and IPNN [26]: Three SOTA models that are specialized
for CTR prediction problem on Criteo and Avazu.

In the experiments, we have tried to be systematic in terms of the comparison. E.g.,
we used m = 2 for FNN, as it is the default choice in almost all studies. For WBDF, we
have used m = 3 as the default choice for factorized component. This is because, WBDF
utilizes CIN from [5] as the factorized component, where m = 3 is default option in
most studies. It is important ot note that an ensemble model of the form: W+B+D+F
is just an WBDF model with-out the attention mechanism. So it is not a competitor
but just a variant of our proposed model. In our initial experiments, we have seen
that attention improves the performance of W+B+D+F model, and hence we have used
attention mechanism as the default setting in WBDF.
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4.1.3 On relationship between wide and broad component’s size

It is important to note that, n = 1 and k = 0 encompasses linear interactions, and
are equivalent models (for comparison). Whereas, n = 2 and k = 1 encompasses
quadratic interactions and are equivalent, whereas n = 3 and k = 2 are equivalent
as they encompass cubic interactions. In general, for a wide model with size n, the
equivalent broad model will have size k = n− 1.

4.1.4 On our Evaluation Strategy

We have used the standard settings (hyper-parameters) of each of the method which
is used in the existing literature for comparison.

Our evaluation strategy is based on cross-validation, i.e., each method is tested on
each dataset using 5 rounds of 2-fold cross validation, and averaged accuracy and AUC

results are reported. For some datasets, we use 10% of the train data for validation
(if needed by the method), resulting in a final train:validation:test (TVT) ratio of
4 : 1 : 5.

To compare results on standard CTR datasets, we follow the evaluation design
strategy of [18], i.e., a train:validation:test (TVT) ratio of 8 : 1 : 1 is used for
two CTR datasets.

4.2 WBDF vs. WD/W/B/D/F

Let us in this section compare the accuracy of WBDF with that of W, B, D and F models.
The results are given in Table 2. We are interested in RQ1, i.e., determining if the
joint learning framework leads to performance better than its constituent parts trained
separately. We will also compare the performance of WBDF with WD-learning, and hence
partly answer RQ2.

One can draw following conclusions from Table 2:

• It is encouraging to see that WBDF outperforms all other compared models including
its four constituent components, which demonstrates its capability as an effective
model for large data quantities.

• The difference in the performance of WBDF and with WD on Pokerhand and two syn-
thetic datasets is massive – almost 15% improvement. This demonstrates the power
of capturing higher-order interactions with Broad component. Note, Pokerhand is
a dataset where each instance represents a poker hand, which has order-5 depen-
dencies. Pokerhand-4 and Pokerhand-6 have order-4 and order-6 dependencies
respectively.

It can be seen that WBDF is superior on all datasets, however, it is far more effective
on multi-class datasets – there is a difference of over 8% in improvement of WBDF and
the next best, i.e., WD model.

4.3 WBDF vs. xdeepFM and other SOTA Models

Let us compare the performance of WBDF with competing low-bias models such as FNN,
DCN and xdeepFM models, to find an answer to RQ2. For the sake of completeness
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Table 2: Comparison of the average accuracy of WBDF with its components, along-
side WD-learning framework, on 12 standard datasets.

Dataset WBDF WD B W D F

Criteo 81.65 79.73 78.91 76.12 75.61 73.67
Avazu 82.12 81.17 81.30 80.19 81.33 80.22
Higgs 89.38 88.11 87.63 78.10 85.10 77.76
Sussy 87.65 86.30 87.11 80.10 83.75 78.93
KDD99 98.37 94.10 92.90 89.80 93.20 89.86
NSL-KDD99 96.55 90.20 88.71 87.10 87.70 87.30
Pokerhand-4 96.39 83.12 82.33 78.25 80.15 77.19
Pokerhand-6 91.62 79.95 80.35 75.98 79.27 75.79
Pokerhand 95.29 80.70 81.10 76.90 79.70 76.69
Covtype 91.26 88.20 87.96 83.20 84.90 83.09
Localization 72.09 65.01 66.70 63.80 64.20 63.67
Adult 87.57 83.50 85.70 81.70 82.68 80.96

Avg - Binary Class 84.748 83.075 83.528 78.382 81.594 77.908
Avg - Multi class 91.653 83.041 82.864 79.291 81.303 79.084
Avg - Overall 88.775 83.055 83.141 78.912 81.424 78.594

Table 3: Comparison of the average accuracy performance of WBDF and with
competing models. TVT split of 4:1:5 (repeated 5 times).

Dataset WBDF xdeepFM DCN FNN LR

Criteo 81.65 81.52 81.46 80.83 76.12
Avazu 82.12 82.10 82.01 81.99 78.67
Higgs 89.38 89.71 89.25 88.13 75.22
Sussy 87.65 87.59 87.32 86.91 77.67
KDD99 98.37 97.22 96.90 93.91 87.93
NSL-KDD99 96.55 96.37 95.10 90.53 86.10
Pokerhand-4 96.39 95.71 84.61 84.12 72.67
Pokerhand-6 91.62 90.07 82.73 81.79 68.93
Pokerhand 95.29 94.11 83.91 83.60 73.11
Covtype 91.26 91.12 91.03 90.86 75.27
Localization 72.09 73.56 67.12 65.83 61.87
Adult 87.57 87.16 85.92 84.73 78.91

Avg - Binary Class 84.748 84.706 84.202 83.712 76.051
Avg - Multi class 91.653 91.162 85.914 84.377 75.126
Avg - Overall 88.775 88.473 85.201 84.101 75.511

(and establishing a baseline), we have also presented the results with logistic regres-
sion model. Since each dataset is different, it will be interesting to see whether there
is a single model that can outperform others on all datasets. We present the accuracy
results in Table 3, from which it can be seen that WBDF-learning framework outper-
form all other baseline models on 10 out of 12 datasets. The only two losses are
on Higgs and Localization to xdeepFM model. Considering that our WBDF wins the
most over SOTA models, we find these result very encouraging. Overall, there is a 3%
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Fig. 4: Comparison of the training-loss convergence profile of WBDF and xdeepFM.

difference in the performance of WBDF over DCN and FNN and a difference of 10% over
LR. It can be seen that WBDF is far more effective on multi-class datasets with a perfor-
mance improvement of 0.37% over xdeepFM. Given the scale of these datasets, again,
such an improvement is significant. On the two CTR datasets Criteo and Avazu,
the WBDF outperforms other models. We will discuss the performance difference
in terms of AUC later in the section. These experimental findings dictate that WBDF has
superior feature engineering resulting in a low-bias model compared to SOTA models.

4.3.1 Convergence Analysis

The comparison of the convergence of training-loss of WBDF and xdeepFM models on
12 datasets is shown in Figure 4. We claim that a better convergence profile is one that
asymptote to a better point in the optimization space, and also converges faster. Note,
in previous section, we already have established that WBDF has a better performance
in terms of accuracy comparing to xdeepFM. According to the convergence plots in
Figure 4, it can be seen that WBDF converges not only much faster but asymptote to a
lower point on most of the datasets. These results are extremely encouraging as they
demonstrate that WBDF not only has a better performance in terms of accuracy but
also in terms of convergence. Furthermore, we compare the training time between WBDF

and the xdeepFM in Figure 5, where it can be seen that WBDF’s better convergence
leads to faster training time as compared to xdeepFM. Please note that the training
time of WBDF includes the structure learning of the Bayesian network. It is important
to note that given the (massive) size of datasets, a small improvement in model’s
accuracy can result in significant business value. Also, the main benefit of WBDF as
compared to xdeepFM is due to its interpretation and knowledge-guided nature. The
fact, that it has a similar or better performance both in terms of accuracy and training
time than xdeepFM and other state-of-the-art models is an added advantage.
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Table 4: Comparison of the AUC performance of WBDF and with SOTA

models on CTR datasets based on evaluation strategy of [18] using a TVT

ratio of 8:1:1 (repeated 2 times).

Dataset WBDF xdeepFM ONN FIBINET DCN IPNN

Criteo 81.58 81.43 81.48 81.31 81.44 81.42
*** * **

Avazu 79.85 79.33 79.92 79.52 79.31 79.44
* ** ***

Fig. 5: Training time comparison between WBDF and xdeepFM.

4.4 AUC Comparison on Criteo and Avazu

Let us use the evaluation strategy of [18] and compare the performance of WBDF

with SOTA methods that are specialized for CTR prediction datasets. We report the AUC
results in Table 4. We use the notation of (*), (**) and (***) to denote the current
best, second-best and third-best methods respectively, according to study in [18] 7.
It can be seen that WBDF leads to better than current-best performance on Criteo

dataset, whereas, it leads to second-best performance on Avazu. Given the special-
ized nature of competing baseline methods, we find these results extremely
encouraging, which demonstrates that WBDF has the potential to be an effec-
tive model. In the following, we will discuss the interpretability of WBDF,
which is a feature missing from all the competing baseline methods.

4.5 Interpretation

In this section, we will answer RQ3 by demonstrating how the Broad component
of WBDF opens the room for a better interpretation and a step towards an explainable
model in a deep learning framework. We conjecture that having this component also
opens the door for adding in auxiliary information (learned either from other sources
or through human experts) in a deep learning model.

7Note, we have used [18] as it is a reliable benchmark study. We have not used the leader board of https:
//paperswithcode.com/sota/click-through-rate-prediction-on-criteo, as we found that different papers have
used different versions of data as well as evaluation strategy.
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4.5.1 Interpretation from BIN

As the learned parameters (Θ) of BIN are actually conditional probabilities of the
form P(xi|y,Π(xi)), they are super interpretable, during and after the training. E.g.,
during training, one can interpret the importance of features for determining the value
of class or predicting class. In this work, we used the following measure of feature-set
importance:

Iyxi,Π(xi)
∝ P(y|xi,Π(xi))

P(y)
. (10)

The conditional probabilities P(y|xi,Π(xi)) can be obtained by conducting the infer-
encing on the broad component BIN [27]. Now, higher the score – Ixi,Π(xi), higher
the contribution of that feature-interaction towards the prediction of class value.
Note, we assume conditional independence (among features) when doing this analy-
sis. In practice, this is not true, however, many algorithms assume such independence,
when determining the importance of a feature (or feature-interaction) for class predic-
tion [28]. We claim that one can do all the interpretation during the training of WBDF.
On the contrary, popular state-of-the-art models such as LIME works by doing an
explanatory analysis once the model is trained.

Interpretability of a model is generally observed by identifying features or fea-
ture combinations that play a role in determining the output of the model. In order
to demonstrate the interpretation capabilities of WBDF, we randomly selected two
instances from Adult dataset and listed feature interactions ranked by importance
based on the probabilites from BIN in Table 5 8. The reason for selecting Adult dataset
is that features are easily interpretable. Most of the other datasets in our analysis lacks
meaningful features. The top 3 high-order features with higher conditional probability
score are marked as bold, for which BIN has given a higher score for predicting class
income > 50K. Next, we tested the same two instances via LIME to explain the fea-
ture contribution. It can be seen from Figure 6 that the top 3 high-order features with
higher contribution via LIME are the same as those in Table 5 for both instances. It
is encouraging to see that BIN can offer the same interpretability capability that LIME
(and its variants) offers only after the training. The similar trend was observed for
other datasets – we have only included two examples in this analysis, due to space
constraints.

4.6 Knowledge-guided Machine Learning

To study knowledge-guided machine learning capability of WBDF – we employ four
datasets (Adult, Sussy, Higgs and KDD99). Our strategy in this experiment is to
first train WBDF with biased dataset. We are interested in comparing this model’s
performance with following model:

• We utilize the Broad component of WBDF to generate synthetic data. The structure
of the Broad component in this model has to be either a) specified by some expert
that can provide an un-biased perspective through structure learning, or b) structure
can be learned on some related un-biased data.

8Note. the instance 1 selected is married, female, USA, civilian, 40 − 55, professor, high-doctorate,
and the instance 2 selected is not-married, male, USA, civilian, 0 − 25, Repair, Some-college
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Table 5: Illustration of interpretability of BIN.

Feature (Π(xi), xi) Iy>50k
xi,Π(xi)

Iy<=50k
xi,Π(xi)

Age=[40,55],Marital-status=Married CIV 0.82 0.17
Age=[40,55],Workclass=Private 0.61 0.2
Occupation = Prof, Education-num =[14.5,inf] 0.71 0.02
Age=[40,55],Hours-per-week = [-inf,34.5] 0.2 0.06
Age=[40,55],Education = Doc 0.16 0.01
Marital-status=Married CIV, Relationship = Own-child 0.27 0.1
Marital-status=Married CIV, Race = White 0.22 0.07
Relationship = Own-child, Sex = Female 0.51 0.23
Sex = Female, Nationality = USA 0.36 0.18
Relationship = Own-child, Capital gain = [-inf,57] 0.02 0.01
Relationship = Own-child, Capital loss = [-inf,1551] 0.012 0.01
Probability 0.915 0.085

Age=[-inf,25],Marital-status=Never-married 0.14 0.74
Age=[-inf,25],Workclass=Private 0.39 0.86
Occupation = Craft-repair, Education-num =[8.5,10.5] 0.37 0.17
Age=[-inf,25],Hours-per-week = [39.5,41.5] 0.55 0.35
Age=[-inf,25],Education = Some-College 0.27 0.1
Marital-status=Never-married, Relationship = not in family 0.12 0.42
Marital-status=Never-married, Race = White 0.31 0.01
Relationship = not in family, Sex = Male 0.09 0.19
Sex = Male, Nationality = USA 0.01 0.02
Relationship = not in family, Capital gain = [-inf,57] 0.01 0.01
Relationship = not in family, Capital loss = [-inf,1551] 0.01 0.01
Probability 0.283 0.717

• The un-biased dataset generated this way is combined with existing biased datasets,
and WBDF model is trained. We call this model the knowledge-guided WBDF model.

We aim to measure the boost in the performance of knowledge-guided WBDF variant
with that of standard WBDF model by computing the lift in the accuracy 9.

The important question is how to produce a biased dataset? Because, none of the
datasets we have used in this work has an associated expert who can provide the true
structure, and also none of the datasets have a related un-biased version available. To
address these issues, we used two different strategies:

• The original dataset is firstly trained (where input features are represented
in one-hot encoding format) with tree-based ensemble model such as Random

Forest. Then the feature importance is obtained from the trained Random

Forest. The most important feature-values in the dataset towards to the classifica-
tion performance are identified. By removing a percentage of instances containing
the most important feature-values – a biased dataset is obtained.

• The second method for acquiring the biased dataset is introduced by leverag-
ing the Shapley Additive explanations (SHAP) values [29]. The SHAP values
can identify influential feature-values according to the cooperative gaming theory.
Specifically, they can quantify the contribution of each feature towards the pre-
diction outcome for a specific instance, considering both its own value and its

9The lift of the accuracy is the improvement in percentage between knowledge-guided WBDF and standard
vanilla WBDF
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Fig. 6: Interpretation of results on selected instances from LIME (first feature is the Π(xi)
and second feature is xi).

interactions with other features. Therefore, it provides a more nuanced understand-
ing of the contribution of the feature-value in the original dataset in complex models.
By leveraging SHAP values, the biased dataset can be obtained by removing the
instances which contain these important feature-values.

In the knowledge-guided learning experiment, the correspondingly used dataset is
divided into training and testing subsets with 80% and 20% ratio. The Broad compo-
nent, i.e., the structure and parameter learning are trained from the original 80% of
the data – denoted as Original Data. The broad component is later used to gener-
ate samples which are equal in size to Original Data – denoted as Generated Data.
Additionally, the training set is used to obtain the biased dataset – denoted as Biased
Data. The testing set is used as the hold-out for evaluation purpose in this experiment.

The Generated data is blended with the biased data to fit a WBDF model for
knowledge-guided machine learning – denoted as knowledge-guided WBDF. Table 6 and
Table 7 shows the comparative results of the knowledge-guided WBDF. It can be seen
that the knowledge-guided WBDF outperforms vanilla WBDF that is trained on biased

data. Overall, it can be seen that knowledge-guided WBDF can obtain an average of
over 10% lift in the accuracy. This is very encouraging as it demonstrates that WBDF
can not only compete with the state-of-the-art models such as xdeepFM in terms of
classification performance, but it can also provide a solution for classifying with biased
dataset through knowledge-guided machine learning. What also stands out in the
Table 6 and Table 7 is the excellent results on Generated data – i.e., WBDF trained
on data generated from Broad component.
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Table 6: Comparison of accuracies on four datasets where biased data is generated
with Ensemble tree-based feature importance approach.

Dataset Biased Data Generated Data– Generated + Biased Data Lift
WBDF WBDF Knowledge-guided WBDF

Adult 77.46 81.42 81.68 5.45%
Sussy 61.59 74.69 78.59 27.6%
Higgs 74.76 88.84 88.91 18.93%
KDD99 88.30 88.82 90.96 2.14%

Average 75.53 83.44 85.04 12.59%

Table 7: Comparison of accuracies on four datasets where biased data is gen-
erated with SHAP-based feature importance approach.

Dataset Biased Data Generated Data– Generated + Biased Data Lift
WBDF WBDF Knowledge-guided WBDF

Adult 81.58 81.42 83.46 2.30%
Sussy 70.91 74.69 77.13 8.77%
Higgs 85.78 88.84 89.62 3.84%
KDD99 78.04 88.82 91.90 17.76%

Average 79.08 83.44 85.53 8.16%

Fig. 7: (Left) Performance variation of WBDF and xdeepFM with different synthetic datasets
with controlled interactions; (Right) Effect of k on WBDF’s performance demonstrated on
synthetic dataset.

4.7 Ablation studies

4.7.1 Controlled Feature Engineering and k

In this section, we compare the performance of WBDF with varying level of feature
interactions. We make use of 3 synthetic Pokerhand datasets, such that it has 4, 5 and
6 level interactions. The results are shown on left-hand-side in Figure 7. We also plot
the performance of xdeepFM for comparison. It can be seen that WBDF has far more
superior feature engineering capability resulting in much better performance on these
synthetic datasets.
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Fig. 8: Accuracy and Training-time comparison of WBDF and WBDF∗.

We also study the role of parameter k in our WBDF model on one of the synthetic
data (Pokerhand-6). The results are shown in right-hand-side of Figure 7. As expected,
the higher the value of k, the better the results are. For sake of completeness, again,
we have plotted xdeepFM performance on this dataset. It can be seen that WBDF with
k = 1 and k = 2 has inferior performance than xdeepFM. However, k = 2 leads to
superior performance – highlighting the importance of BIN in WBDF framework.

4.7.2 On BIN’s Form

The output of BIN in WBDF is based on Equation 7, where it learns parameters
Θ directly. One can be interested in the output of the form of Equation 6, i.e.,
σb(B

T logΘ). Note, in this case, we aim to pre-learn the parameter Θ (optimizing
log-likelihood), and learn B as part of WBDF training. We call this version WBDF∗. We
conducted the ablation study on these two forms of BIN. It can be seen from Figure 8
that both forms of BIN lead to similar results, though WBDF∗ is much faster in training
as compared to WBDF. This is expected, as WBDF∗ does not have to fulfil the probability
constraints during the discriminative training process. The downside of this speed is
the lack of interpretation in WBDF* model.

4.7.3 On the role of Attention

In this section, we extracted the attention score from WBDF during training on Adult

dataset. As we discussed earlier, one useful trait of attention is that it leads to
excellent interpretability, as it explains which component is contributing more towards
the final prediction. As the attention score is highly instance-specific, we have used
different portions of the data to extract an average attention score (denoted as
30%data,50%data,70%data,100%data). Figure 9 shows the extracted attention score
where the darker color represents a higher score. The x-axis represents the component-
wise score for each of the two classes. E.g, W 1 represent the attention score of wide
component for first class, and W 2 represents the attention score of wide compo-
nent for the second class. We present results during two stages of the training, that
is: epoch = 50, epoch = 200). It can be seen that the attention scores are consistent
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Fig. 9: Attention score over the various component in WBDF during training.

during the two training stages. Whereas, components B 2 and D 2 are the one with
highest weights, and hence played a dominant role in classification. One can also see
that deep component needs a lot more data (larger number of epochs) to gain confi-
dence and play a role in deciding the class label, as it is more dominant at 200 epochs
instead of 50. However, the broad component remains consistent from the start of
training till finishing (attention scores do not change from 50 to 200 epochs). It is
worth noting that class 2 has higher weights than class 1 (i.e., W 2 > W 1, B 2 > B 1,
D 2 > D 1 and F 2 > F 1) in Figure 9 – this is because on adult dataset, the class
distribution is skewed in favour of class 2. Nonetheless, the focus should be on the
relative weights of each component, and it can be seen that broad component plays
the biggest role in making a prediction.

5 Conclusion

In this paper, we have presented a model for addressing the growing need of build-
ing a low-bias model for extremely large quantities of data, that is also interpretable.
We have shown that our proposed WBDF model based on an end-to-end learning
of wide, deep, factorized learning, and a newly formulated broad interaction

network, can lead to a) better classification performance than SOTA models (hence
with superior feature engineering capability); b) faster training time, better con-
vergence profile; c) offers interpretability as good as SOTA frameworks, especially
during the training time; d) capability to do knowledge-guided machine learning, as
demonstrated by the scenario of bias-correctness. With ever-increasing scale of today’s
datasets, we believe that WBDF offers an excellent learning framework. In future, we
plan to study alternative models of broad-learning, including unrestricted Bayesian
networks, as well as incorporating capability to handle numeric features.

6 Code

The code for experiments conducted in this paper is available at: https://anonymous.
4open.science/r/wbdlearning-464D/.
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