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Abstract—Generative Adversarial Network (GAN) models have
shown to be effective in a wide range of machine learning
applications, and tabular data generation process has not been
an exception. Notably, some state-of-the-art models of tabular
data generation, such as CTGAN, TableGan, MedGAN, etc. are
based on GAN models. Even though these models have resulted
in superiour performance in generating artificial data when
trained on a range of datasets, there is a lot of room (and
desire) for improvement. Not to mention that existing methods
do have some weaknesses other than performance. E.g., the
current methods focus only on the performance of the model,
and limited emphasis is given to the interpretation of the model.
Secondly, the current models operate on raw features only, and
hence they fail to exploit any prior knowledge on explicit feature
interactions that can be utilized during data generation process.
To alleviate the two above-mentioned limitations, in this work,
we propose a novel tabular data generation model – Generative
Adversarial Network modelling inspired from Naive Bayes and
Logistic Regression’s relationship (GANBLR), which can not only
address the interpretation limitation in existing tabular GAN-
based models but can provide capability to handle explicit feature
interactions. By extensively evaluating on wide range of datasets,
we demonstrate GANBLR’s superiour performance as well as
better interpretable capability (explanation of feature importance
in the synthetic generation process) as compared to existing state-
of-the-art tabular data generation models.

Index Terms—Generative Adversarial Network, Tabular Data,
Naive Bayes, Logistic Regression, Bayesian Networks

I. INTRODUCTION

Generative Adversarial network (GAN) model and its variants
have shown to be effective in a wide range of areas ranging
from Computer vision [1], Data Privacy [2], Medicine [3]
etc. Typical GAN models [4] constitute of two components:
the generator learns to produce a synthetic output from the
input noise, whereas the discriminator learns to distinguish
the generator’s synthetic data from the real one. Those two
components interact based on a game theoretic algorithm such
that as the training continues, the generator learns to produce
better and better synthetic data, and the discriminator learns to
more accurately distinguish between the synthetic and the real
data. Typically the generator and the discriminator are modelled
as deep Artificial Neural Networks (ANN), with the convolution
and dense layers. Though, their application to synthetic data
generation for computer vision tasks is ground-breaking [5], [6],
[7], their application to tabular data generation, has been marred
with challenges. Of course, the main challenge stems from the
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fact that no explicit structure is available among the input data
features which can be exploited by the convolutional layers [8],
leaving the responsibility to dense layers to engineer features
in order to capture the correlation among features. Note, that
tabular datasets mainly constitutes of categorical and numeric
features. How to seamlessly handle these different feature
types is not trivial. Regardless of the challenge, application
of GAN to tabular data generation has seen promising results,
with models like CTGAN [9], TableGAN [8], MedGAN [3]
leading to the state-of-the-art (SOTA) results. E.g, CTGAN
generates tabular data via conditional GAN strategy, where the
categorical features are regarded as some condition, while using
the Gaussian Mixture Model estimation for numeric features.
It utilizes the Wasserstein Distance with gradient penalty to
generate the synthetic data. TableGAN, on the other hand,
actually uses the convolutional layers in both the generator and
the discriminator stages, and introduces an information loss
based objective function.

We believe that tabular data generation (especially with GAN
models) is still in early days, and there is strong demand
for more accurate and far better interpretable data
generation models. In this work, we will demonstrate that
GAN strategy is indeed effective, but (instead of relying on
ANN and its variants) a fundamentally different approach to
its data generator and discriminator components can lead to
much better results. Before we discuss our formulation, let us
discuss some limitations of existing GAN-based tabular data
generation models:

• First, effective modelling of feature interactions is critical
in many machine learning tasks, and data generation is
without exception [10], [11]. Of course, generators and
discriminators in vanilla GAN models can capture feature
interaction, but this implicit feature interaction will not
be interpretable [11]. Also, there is no guarantee that any
particular interaction is captured by the model. E.g., we
may have some prior knowledge that feature Salary is
highly correlated with feature Age — but the generator
in vanilla GAN may or may not capture this interaction.
Because, it is likely that the model can find some other
more useful interactions. This lack of explicit feature
interaction modelling is one of the main factors impacting
the performance of synthetic data generation. Of course,
one solution is to craft the feature interaction manually —
but this will be tedious and time consuming.
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• Secondly, related to the first issue that we discussed, the
usage of ANN and variants in existing GAN-based tabular
data generation models lead to a generation process that
is hard to interpret. For tabular data generation, since the
goal is to improve the performance of machine learning
tasks, the demand for interpretability is far more crucial.

It can be seen that these two limitations of existing vanilla
GANs mainly stem from the fact that their generator component
is carved out of a deep ANN (or its variants). Can we utilize a
different model as the generator to address these limitations?
Answering this question has been the main motivation of this
work.

In this work, we propose a radically different formulation,
which departs from existing vanilla GAN based data generation
– instead of using a deep ANN (or its variants) as the generator
(and the discriminator), we utilize the Bayesian Network
(BN) model. A BN is a directed acyclic graphical model
– in which the training process incorporates learning the
structure as well as its associated parameters. By specifying (or
learning) the structure, one can explicitly incorporate feature
interactions, whereas since its parameters correspond to actual
probabilities, the model is interpretable. It can be seen that BN
has desirable data generation properties which can address the
above-mentioned limitations of existing tabular GAN models.
But how can one use BN in the GAN formulation? To answer
this question, let us dive deeper in BN.

Typical BN models works with tabular data and maximizes
the log-likelihood (LL)

∑m
i=1 log P(yi,xi), where m is the

number of data points, x is a vector of independent features with
discretized values and y is the dependent target feature. Note,
the numeric features of x are discretized prior to calculating the
probabilities in BN models. A BN is an example of a generative
model, as one can use it to generate (sample) data once the
model is learned. Of course, one can calculate P(yi|xi) in
BN to obtain a classifier. However, the predictive performance
of BN classifiers is not generally good, as compared to the
models that directly optimizes P(yi|xi) – also known as
the discriminative models. Interestingly, generative models
such as BN can be trained by optimizing a discriminative
objective function such as the conditional log-likelihood (CLL)∑m
i=1 log P(yi|xi). E.g., a popular example of BN is naive

Bayes (NB) classifier, whose discriminative equivalent is the
well known Logistic Regression (LR) model which of course
optimizes the CLL. NB and LR are well-known examples
of generative-discriminative equivalent models – in general,
one can train any BN by optimizing the CLL – leading to a
respective generative-discriminative equivalence. Following the
notation in [12], we denote a BN trained by optimizing the CLL
as BNd, and then under this notation, we have LR = NBd [13].
Typically, since structure learning of BN is time consuming
– we can resort to simple restricted models such as Tree-
Augmented Naive Bayes (TAN) or K-Dependence Bayesian
estimators (KDB), in which the structure learning only takes
one or two passes through the data. Now, one can train TAN or
KDB by optimizing a discriminative objective function, i.e., CLL
– leading to either TANd or KDBd formulations.

Although one can sample from a standard BN the samples
might not be of good quality – since when optimizing P(y,x),
there is no guarantee that P(y|x) will be well-calibrated [14].
One solution is to directly sample from BNd, which optimizes
P(y|x). Well, here the issue is that the parameters are not
constrained to be actual probabilities 1. One solution is to
constrain the weights to be the actual probabilities during
the training of a discrmiminative objective function. Such
weights constraining has been explored for LR and KDB in [12].
Following the naming conventions from existing work in this
area, we denote a BN which is learned discriminatively, but
constrain weights so that they conform to actual probabilities
as BNe.

We claim that BNe is the perfect model to be used as
a generator in GAN models. Particularly, it optimizes a
discriminative objective function (and hence can be learned
end-to-end with back-propagation algorithm), the weights are
actual probabilities so you can sample, and importantly you
can interpret the model based on the learned weights. One
drawback of using BN in GAN models is that, it can only
process and hence generate data with categorical attributes
only. Note, it has been recently shown that contrary to popular
belief, discretization can lead to models that have superiour
performance as compared to their numeric counter-parts [15].
Therefore, discretizing numeric attributes, and then sampling
using BNe can be an effective alternative to directly generating
the numeric attributes.

In our proposed formulation of GAN models, we will use
typical Bayesian Network models as the generator (BNe, e.g.,
NBe, TANe, KDBe) and their discriminative counter-parts as
discriminator (BNd, e.g., NBd, TANd, KDBd, etc.). We name
this new formulation as: Generative Adversarial Network
modelling inspired from Naive Bayes and Logistic Regression’s
relationship (GANBLR). However, NB and LR terms in the
GANBLR acronym are only figurative to represent broad
generative and discriminative learning paradigms. In practice,
one can use any generative model as the generator and its
corresponding discriminative model as the discriminator.

Let us summarize the contributions of this work:

• We propose a novel model of tabular data generation,
namely GANBLR – which uses BNe as the generator and
BNd as the discriminator. Note, the generator in GANBLR
cooperates with the discriminator to form an adversarial
structure to improve the quality of synthetic tabular data.
Note, GANBLR is limited to producing datasets that have
categorical attributes only.

• Even though BNe has been studied in the context of
classification – this is the first work which studies its
effectiveness as a data generation technique.

• We compare GANBLR to existing SOTA GAN models on
15 public tabular datasets. The results demonstrate that
GANBLR not only outperforms in the machine learning

1E.g., we can sample a point from naive Bayes, but not from LR.
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utility 2 and the statistic similarity measured with Jensen-
Shannon Divergence and Wasserstein Distance, but also
provides better interpretability.

The rest of the paper is organized as follows. We will discuss
related work in Section II. The details of GANBLR is provided
in Section III. We provide an extensive experimental analysis
in Section IV. We conclude in Section V with pointers to future
works.

II. RELATED WORK

Existing application of GAN models to tabular data generation
has followed two directions – the first is based on the vanilla
GAN structure, while the second is based on the conditional
GAN structure. Let us briefly discuss these two directions.

1) Vanilla GAN-based Tabular Generation: This stream
of research relies on seminal work of [4], such that the
generator takes on some random noise as input and is trained
to approximate the real data distribution. The discriminator
learns to discriminate the synthetic data from the real data.
Several models fall in this category, including MedGAN [3],
CrGAN [16], TableGAN [8], PATEGAN [2], etc. Among these,
MedGAN utilizes the auto-encoder architecture as the generator
to generate both categorical and numerical features. The model
has produced some realistic synthetic health record data. On
the other hand, CrGAN model was designed to generate the
Passenger Name Records (PNR), with details of passenger’s
personal information such as name, date of birth, the reserved
trip information, the flight information and the payment details,
etc. It uses the Cramer distance in the synthetic data generation
for providing the unbiased sample gradients to better handle
the gradient descent, and to overcome the local minima during
training. TableGAN utilizes the convolutional neural network
in the generator part to capture the information of feature at
more granular level. The model also adopts the information loss
to differentiate the discrepancy between the synthetic and the
real data. TableGAN also claimed that the generated synthetic
data could have better privacy preserving properties along
with excellent machine learning utility. Similar to TableGAN,
PATEGAN is designed to prevent the privacy attacks 3. And
the tabular data generated has the differential privacy guarantee
to avoid the privacy attack.

Tabular GAN models have shown to be effective in different
domains, but still have two critical limitations. First, the models
are only proposed for generating binary class datasets, and
their suitability to multi-class settings is not clear and well-
established. Secondly, these models are not able to generate
the synthetic data with a particular (or specified) feature-value.
E.g., TableGAN can not generate the credit information for
a female card holder who lives in say New York. This is a
crucial limitation for imbalanced machine learning datasets

2Machine learning utility means that the synthetic data is used to train the
model and then use real data to test the performance.

3A privacy attack modifies the private aggregation of teacher Ensembles to
allow the tight bound of the privacy noise added on each individual sample of
the tabular data.

such as fraud detection and alleviating it has been the main
focus of conditional GAN models, which we discuss next.

2) Conditional GAN based Tabular Generation: Condi-
tional GAN-based tabular data generation models relies on a
conditional-vector to specify the particular feature value or class
label to generate. Notable examples include CW-GAN [17] and
the well-known CTGAN [9]. CW-GAN has been shown to get
results better than competing methods on credit data generation.
The model optimizes three different losses a) Wasserstein
Distance between the synthetic and the real data; b) the
gradient penalty for regularizing the model complexity on the
discriminator and c) the auxiliary classifier loss, encouraging
the generator to generate samples that recognizably belong to
the given class. CTGAN is the current SOTA model for tabular
data generation. To better generate both categorical and numeric
features it adopts a mode-specific normalization for numeric
features and training-by-sampling process in its framework [18],
[8], [3]. The mode-specific normalization firstly compute the
modes of a numeric feature by Gaussian Mixture Model, then
calculate the probability of the value coming from each of the
mode. Lastly, the value of the numerical feature is represented
by the mode category, and also normalized by the mean and
standard deviation from the probability density of the mode.
Later, the normalized numerical features are concatenated with
categorical features to represent as the input for CTGAN. The
training-by-sampling strategy in the conditional generator of
CTGAN can best utilize the advantage of the condition-vector to
balance categorical features via synthetic data generation. For
example, the instances of minor class can have less chance to
be sampled without the training-by-sampling strategy. However,
in training-by-sampling strategy, the conditional vector makes
all the categories from discrete attributes to sample evenly,
therefore, the synthetic data distribution matches the real data
distribution.

III. METHOD

Let us start by presenting some preliminary work to be used
as a foundation, as well as some notation that is used through-
out in this paper. Later, we will delve deep in our proposed
algorithm – GANBLR.

A. Preliminary and Notations

We denote the generative model (generator) as G, and
the discriminative model (discriminator) as D. The real (or
original) dataset is denoted as Ddata = [(Xk

g , Yg)], where
Xk
g = [x1,x2..,xm], where xi ∈ Rn, i.e., data with a total

of m instances each having n independent features, with
k-order feature interaction present among them. Similarly,
Yg = [y1, y2.., ym], where yi ∈ R1, constituting corresponding
class labels. Note, we make the dependence on the order of
feature interaction (k) explicit in our formulation. Each dataset
has a maximum level of interactions present among features,
which is denoted by k here. Of course, for a generator to
produce samples effectively, it must be able to model these
k-order interactions present in the data. If we are using a BNe

model as the generator, we can easily specify k, however, if
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Notations Representation
G Generator model
G̃(Ddata) Sampling role of Generator
Ḡ(.) Sampling role of Generator
D Discriminator model
n Number of Features
m Number of Instances
k Order of feature interaction
Ddata = [(Xk

g , Yg)] Real dataset used in generator
xi, yi Sampled data instance from real dataset
xi, y, πxi Feature values in the input datum
Sdata = [(X̄k

g , Ȳg)] Synthetic dataset
Z ∼ Pz(.) Random noise input
Sdata Synthetic data generated from generator
[(Sdata, Yd = 1)] Real data input of discriminator
[(Sdata, Yd = 0)] Synthetic data input of discriminator
BNe Bayesian Network as the generator in GANBLR
BNd Bayesian Network as the discriminator in GANBLR

Table I: List of symbols used in this work.

a traditional deep ANN is used, modelling of interactions of
order-k is more of a trial-and-error practice to determine the
right breadth and depth of the generator network. The term
g in the notation makes it explicit that the dataset is to be
processed by the generator model – G.

We denote the real data distribution as Pdata(Xg, Yg) or
Pdata(·) from which Ddata is generated.

In GAN formulation, G is trained to approximate the real
data distribution Pdata(.) with some random (noise) input. We
denote the random input data as: Z = [z1, ..., zm]. And the
distribution generating Z as PZ(Z) or PZ(.).

The synthetic dataset is denoted as Sdata = [(X̄k
g , Ȳg)], where

X̄k
g = [x̄1, ..., x̄m], and Ȳg = [ȳ1, ..., ȳm]. Here, x̄i ∈ Rn and

ȳi ∈ R1. Again, the superscript k denotes that the synthetic
data should have the same order of feature interactions as in
the original dataset.

As we know that in GAN formulation the generator generates
synthetic data from the noise – in our notation, we express it
as: Sdata ∼ G(Z). The discriminator model – D, is trained to
discriminate between Ddata and Sdata. To do this, an auxiliary
label Yd = 1 and Yd = 0 is appended with Ddata, and Sdata
respectively, specifying if the sample belongs to original or
synthetic data. Formally, the objective function of tabular GAN
models leads to solving the min-max adversarial game, which
in our notation is expressed as:

max
D

min
G

ED∼Pdata(.)[logD(Ddata)]

+ EZ∼PZ(.)[log(1−D(G(Z)︸ ︷︷ ︸
Sdata

))]. (1)

It can be seen that, G(Z) generates the synthetic dataset
samples Sdata, and D tries to map the synthetic data to a
scalar value representing the probability of it being real or not.

In the following, we will discuss how to use BNe as the
generator and BNd as the discriminator, leading to our GANBLR
formulation. List of all the symbols used in this work is given
in Table 1.

Generated
Original 

m × n

Sample

Discriminator

(0) Fake
Optimize

(1) Real

Generator

෨𝐆(𝓓𝒅𝒂𝒕𝒂)

ത𝐆(⋅)

𝐁𝐍𝒆

𝐁𝐍𝒅

𝓓𝒅𝒂𝒕𝒂

𝓢𝒅𝒂𝒕𝒂

𝓓𝒅𝒂𝒕𝒂

Figure 1: GANBLR Framework.

B. GANBLR – Components

The generator in our proposed formulation deviates from
vanilla GAN as it has two roles to play:
• Its first role is to learn the parameters of BNe. By doing

so, it learns the weights by optimizing the discriminative
objective function, while fulfilling the probability con-
straints on the weights. We denote the generator for this
training role as G̃. Note, the input to G̃ is the original
data Ddata, i.e., we can write: G̃(Ddata).

• The second role of the generator is to sample data after the
discriminative Bayesian Network BNe is trained. Since the
optimized parameters are conditional probabilities, now
we can use BNe in the generative mode to sample the
synthetic data samples Sdata. We denote this sampling role
as Ḡ. The input to this role of generator is null – i.e.,
we can write: Ḡ(.). Note, this formulation deviates from
existing tabular GAN models, as our generator does not
generate from random noise distribution.

The two roles of the generator in GANBLR works seamlessly in
an overall adversarial training framework – first, the generator
operates in a training role (G̃) for optimizing its weights
discriminatively under some constraints, and then shift its role
to sampling (Ḡ), for synthetic dataset generation. For sake of
simplicity, we will use notation G for generator in cases where
the role of generator is cleared from the context.

The discriminator D in GANBLR is again a Bayesian
Network – BNd (which is trained discriminatively, but no
constraints on the weights). It learns to distinguish between
Ddata and Sdata. The loss from D is back-propagated to
the generator G for the improvement of the synthetic data
generation. Let us delve into the details of each component
of GANBLR.

1) Generator G: Let us establish the form of the generator
first. In GANBLR, we recommend to use restricted Bayesian
Network model of KDB. Although, any form of Bayesian
Network can be used in GANBLR framework, restricted
Bayesian Networks have some advantages. First, the structure
can be configured easily by specifying the hyper-parameter, i.e.,
number of parents (k). Therefore, GANBLR only focuses on
parameter learning given the structure. Secondly, since, a BN
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with immoral nodes can lead to non-convex problems according
to [19], using a restricted Bayesian Network decreases the
chances to obtain immoral nodes. E.g., with k < 2, we
do not have the problem of immoral nodes. However, with
k ≥ 2, discriminative training of BN can lead to non-convex
optimization 4.

The KDB model use the mutual and conditional mutual
information to learn the structure. A typical feature interaction
in a KDB model includes feature itself, the target feature, and
its parent feature(s). As discussed earlier, we wish to train KDB
discriminatively with some constraints fulfilled – leading to
KDBe formulation. However, we will use the term BNe instead
(for sake of generalization).

The generator in GANBLR optimize following two objective
functions:
• Maximizing G̃(Ddata) which is the conditional log-

likelihood of the form: log(P(Yg|Xk
g )), and

• Minimizing the loss log(1 − D(Ḡ(.))) or log(1 −
D(Sdata)).

Instead of minimizing log(1 − D(Sdata)) we can maximize:
− log(1 − D(Sdata)) instead, which leads to the objective
function for the generator G as:

max
θgθgθg∈G

log(P(Yg|Xk
g ))︸ ︷︷ ︸

G̃(Ddata)

− log(1−D(Sdata︸︷︷︸
Ḡ(.)

)).
(2)

Note, just like vanilla GAN models, − log(1−D(Sdata)) part
of the objective function is not involved while training the
parameters of G, as the discriminator D is fixed during G’s
optimization.

Let us focus on the generator parameters (θgθgθg) that are to be
learned in Equation 2. For this, we write log(P(Yg|Xk

g )) as:

log P(Yg|Xk
g )) = (log(θy) +

n∑
i=1

θxi|y,πxi

+ log(
∑
y′

(θy′
n∏
i=1

θxi|y′,πxi
)).

(3)

Here θy denotes the weight associated with class prior or can
be considered as the intercept. xi denotes the feature value
for i-th feature, and πxi

denotes the set of feature-values of
those features which are feature i’s parents. Note, y denotes
the class value, also class is the parent of each feature. Since
Bayesian Network structure leads to conditional probabilities,
our notation is symbolic as we represent a weight in our network
as: θxi|y,πxi

. In practice, GANBLR has a parameter θ associated
with interaction: xi, y, πxi

. Note, log
∑
y′(θy′

∏n
i=1 θxi|y′,πxi

)

is the normalization term to make sure that P(Yg|Xk
g ) is

between 0 and 1.
Notably, GANBLR enforces the constraints on θgθgθg, making

sure that:
Xi∑
j=1

θxj |y,πxi
= 1, (4)

4We show in our experiments that such non-convexity is not a huge issue,
as we still get good results with KDB where k = 2. Testing with higher values
of k, as well as with unrestricted BN models has been left as a future work.

where Xi represents the cardinality of feature i, and xj
represents j-th feature value. Additionally, following constraint
is satisfied:

θxi|y,πxi
=

exp (θxi|y,πxi
)∑Xi

j=1 exp (θxj |y,πxi
)
. (5)

Once the BNe weights are trained, the second role Ḡ of the
generator, that is, to generate the data begins. One can generate
the synthetic data Sdata by using the forward sampling [20].
One can set the size of synthetic dataset size (m), in forward
sampling, whereas, the feature interaction order k is expected
to be the same as that of generator G’s input, i.e., Ddata. The
sampling process of generator G is quite evident, and can be
expressed as:

Sdata = Ḡ(.). (6)

2) Discriminator D: The discriminator D determines the
quality of the synthetic data Sdata during the training, and then
of course, back-propagate the error to the generator G. Note,
as we discussed, the generator in GANBLR G gets the loss
from the discriminator D to adjust its weights θgθgθg . The input for
discriminator D is shaped with [Ddata, Yd = 1] and the synthetic
data [Sdata, Yd = 0]. In GANBLR, the discriminator D is again
a Bayesian Network model (BNd) trained to optimize the CLL
with the hyper-parameter (k) same as that of generator’s
Bayesian Network (BNe). The training of discriminator D
aims to maximize:

• P(Yd = 1|Ddata) = D(Ddata), and
• P(Yd = 1|Sdata) = 1−D(Sdata),

by optimizing the following objective function:

max
θdθdθd∈D

logD(Ddata) + log(1−D(Sdata)), (7)

where θdθdθd are the parameters of BNd, whereas log (1−D(Sdata))
is passed on to the generator G, as in standard vanilla GAN
formulation.

C. GANBLR – Algorithm

The training of GANBLR requires to train the generator G’s
and the discriminator D’s parameters in turns. We combine
Equation 2 and Equation 7 to obtain the objective function of
our GANBLR formulation:

max
θdθdθd

min
θgθgθg

logD(Ddata) + log(1−D(Sdata))

− log(P(Yg|Xk
g )).

(8)

The complete algorithm of GANBLR is provided in Algorithm 1,
and we provide its architecture in Figure 1. In a total of Q
iterations (epochs), the input to GANBLR is used to train G̃,
while fixing the discriminator D. Afterwards, the discriminator
D is trained to discriminate between the synthetic and real
datasets.
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Algorithm 1: Algorithm GANBLR

Input : Original data - Xk
g , Yg

Output : Synthetic data - X̄k
g , Ȳg

1 for iteration q ⊂ Q in training do
2 Sample m instances (Xk

g , Yg) ∼ Pdata(.)

3 Obtain θgθgθg by optimizing G̃ via Equation 2 with
gradient descent

4 Generate Sdata via Equation 6
5 for step t ⊂ T in discriminator D do
6 Obtain θdθdθd by optimizing D via Equation 7 with

gradient descent

7 return Sdata ≡ X̄k
g , Ȳg

Algorithm 2: Algorithm GANBLR-nAL

Input :Xk
g , Yg

Output : Synthetic data X̄k
g , Ȳg

1 for iteration q ⊂ Q in training do
2 Sample m instances (Xk

g , Yg) ∼ Pdata(.)

3 Obtain θgθgθg by optimizing G̃ via Equation 2 with
gradient descent

4 Generate Sdata via Equation 6

5 return Sdata ≡ X̄k
g , Ȳg

D. GANBLR – No Adversarial Learning

It can be seen from Algorithm 1, that GANBLR can still
fulfill its goal of synthesizing data without an adversarial
learning component (i.e., D). In practice, we can dump D
from GANBLR – leading to a configuration that we call
GANBLR-nAL. However, we argue that having an adversarial
learning component can lead to much better data generation
model as we discuss later in Section IV-D – where we compare
GANBLR with GANBLR-nAL. Nonetheless, the GANBLR-nAL
algorithm is provided in Algorithm 2:

E. GANBLR – Summary

Let us briefly discuss two salient features of GANBLR. From
Algorithm 1, it can be seen that GANBLR can generate the
synthetic dataset Sdata using Equation 6. As we mentioned in
Section II, a desirable property of tabular generation models
is generating the synthetic data with particular feature value
(e.g., to resolve the imbalanced dataset limitation). Of course,
the GANBLR’s generator can simply sample the synthetic
dataset by specifying the particular feature value with rejection
sampling [21], and can be effective for imbalanced data
generation.

IV. EXPERIMENT AND ANALYSIS

Let us assess the efficiency of GANBLR in synthetic data
generation in this section. We consider 15 commonly used
datasets to compare GANBLR performance with three SOTA

Dataset m n C Size
Intrusion 4M 41 2 Large
Pokerhand 1M 11 10 Large
Covtype 581012 55 7 Large
Shuttle 58000 9 7 Large
Connect-4 67557 42 3 Large
Credit 50000 31 2 Medium
Adult 50000 14 2 Medium
Chess 28056 6 7 Medium
letter_rocog 20000 16 26 Medium
Magic 19020 11 2 Medium
Nursery 12960 8 5 Small
Sign 6500 8 3 Small
Satellite 6435 36 7 Small
Loan 5000 13 2 Small
Car 1728 6 2 Small

M denotes million. m, n, C denote the number of instance,
features and number of classes, respectively.

Table II: Description of datasets.

GAN models for tabular data generation. Specifically, we will
evaluate the effectiveness of GANBLR in terms of:
Machine learning utility – which reflects the quality of the

synthetic data.
Statistical similarity – which measures the statistical similar-

ity between the synthetic and the real data.
Interpretability – which shows the interpretable capability of

GANBLR.
Both the machine learning utility and the statistical similarity
are standard measures to determine the quality of data gener-
ation algorithms [9]. Moreover, we perform various ablation
studies to study a) the effect of GANBLR’s hyper-parameter k
and b) to determine the effectiveness of adversarial component
of GANBLR, by comparing GANBLR with GANBLR-nAL.

A. Experiment setup

1) Datasets: We use 15 commonly used classification
datasets, 13 from UCI dataset repository and 2 from Kaggle
— Credit and Loan. All these datasets have a specific
dependent variable and a set of independent features. Among
them, 5 are large datasets with more than 50K instances
(denoted as Large), 5 are medium with less than 50K but
greater than 15K instances (denoted as Medium), while the
other 5 with less than 15K instances (denoted as Small).
Their details are summarized in Table II.

2) Baselines and Evaluation Metric: We compare GANBLR
with CTGAN, TableGAN and MedGAN. All baseline methods
are trained with 150 epochs for 5 Large datasets, and 100
epochs for the Medium and Small datasets. Each experiment
is repeated 3 times with 2-fold cross validation, and averaged
results are reported. It can be seen from Table II that most
datasets have > 2 classes, and hence, we have reported the
accuracy (instead of widely used auc measure).

3) Configuration and Running Environment: The parameter
k in the experiments is set to 0 – that is the Bayesian network
in the generator model is naive Bayes and in discriminator,
it is Logistic Regression. In Section IV-D, we will study the
effect of varying the value of k. GANBLR is coded in Python
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Dataset Model GANBLR CTGAN TableGAN MedGAN

Intrusion

LR 0.9316 0.9232 0.792 0.826
MLP 0.901 0.926 0.739 0.803
RF 0.9398 0.893 0.768 0.812
XGBT 0.9318 0.918 0.721 0.831

Pokerhand

LR 0.533 0.469 0.471 0.371
MLP 0.5518 0.435 0.39 0.382
RF 0.572 0.502 0.41 0.39
XGBT 0.5837 0.511 0.423 0.402

Covtype

LR 0.653 0.671 0.57 0.472
MLP 0.673 0.6961 0.602 0.455
RF 0.703 0.705 0.582 0.466
XGBT 0.691 0.6827 0.591 0.497

Shuttle

LR 0.996 0.951 0.927 0.988
MLP 0.993 0.972 0.912 0.982
RF 0.9931 0.967 0.929 0.992
XGBT 0.996 0.9801 0.92 0.991

Connect

LR 0.7517 0.702 0.663 0.692
MLP 0.783 0.727 0.652 0.701
RF 0.791 0.682 0.673 0.691
XGBT 0.803 0.709 0.656 0.712

Credit

LR 0.9998 0.9979 0.9981 0.998
MLP 0.9997 0.999 0.9972 0.9982
RF 0.9996 0.9981 0.9987 0.999
XGBT 0.9998 0.9976 0.998 0.998

Adult

LR 0.74 0.787 0.757 0.737
MLP 0.842 0.831 0.761 0.739
RF 0.81 0.792 0.783 0.721
XGBT 0.851 0.839 0.775 0.733

Chess

LR 0.8478 0.693 0.722 0.577
MLP 0.877 0.673 0.735 0.552
RF 0.893 0.701 0.714 0.56
XGBT 0.882 0.723 0.751 0.557

Letter_recog

LR 0.689 0.531 0.462 0.47
MLP 0.739 0.601 0.392 0.462
RF 0.713 0.566 0.452 0.47
XGBT 0.736 0.539 0.478 0.483

Magic

LR 0.78 0.656 0.641 0.648
MLP 0.789 0.672 0.632 0.668
RF 0.803 0.698 0.665 0.671
XGBT 0.812 0.681 0.632 0.676

Nursery

LR 0.8819 0.793 0.678 0.569
MLP 0.902 0.839 0.681 0.575
RF 0.919 0.802 0.676 0.582
XGBT 0.93 0.836 0.688 0.585

Sign

LR 0.61 0.472 0.482 0.389
MLP 0.649 0.479 0.473 0.401
RF 0.61 0.4563 0.491 0.412
XGBT 0.636 0.489 0.499 0.418

Satellite

LR 0.85 0.496 0.502 0.405
MLP 0.887 0.502 0.492 0.388
RF 0.879 0.51 0.511 0.392
XGBT 0.89 0.499 0.502 0.41

Loan

LR 0.772 0.706 0.756 0.386
MLP 0.801 0.683 0.762 0.392
RF 0.816 0.731 0.757 0.406
XGBT 0.822 0.739 0.759 0.403

Car

LR 0.85 0.713 0.62 0.611
MLP 0.865 0.686 0.59 0.582
RF 0.873 0.719 0.621 0.575
XGBT 0.891 0.721 0.633 0.591

Average 0.8151 0.7145 0.6651 0.6108

Table III: Machine Learning Utility on all datasets in TSTR

3.7 in Tensorflow 2.5 framework, with 8 core Intel i8
CPU machine with 32 GB RAM memory.

4) Machine Learning Utility: We will make use of the
following two approaches to assess the machine learning utility
performance:

TSTR – Training on Synthetic data, Testing on Real data.
TRTR – Training on Real data, and Testing on Real data.

To obtain the TSTR and TRTR performance of GANBLR and
competing baseline methods, we will use four commonly used

Method

L˜Accuracy% M˜Accuracy% S˜Accuracy%
TRTR

80.84% 86.80% 84.62%
TSTR

GANBLR 78.85% 84.02% 81.67%
CTGAN 75.27% 74.88% 64.37%
TableGAN 66.95% 71.72% 60.87%
MedGAN 67.28% 68.58% 47.36%

Table IV: Average Machine Learning Utility comparison of GANBLR
and competing baseline models on different-sized datasets.

machine learning classification algorithms (Section IV-A2):
• Logistics Regression (LR),
• Multi-layer-Perceptron (MLP),
• Random Forest (RF), and
• Extreme Gradient Boosting Tree (XGBT).

For TSTR, we first split the real datasets into real training and
real testing datasets: the real training datasets are used as the
input for GANBLR and its baseline methods for training. Once
training is completed, the synthetic datasets are generated. The
synthetic training datasets are used to train the above-mentioned
machine learning classification algorithms which will then be
evaluated on the real testing datasets. The result of TSTR could
not only show the realistic machine learning utility of all the
compared methods, but also answer the question on “Could
synthetic data be used as substitute of the real data without
significantly dropping the machine learning task performance?”.
Ideally, higher the accuracy from TSTR (high machine learning
utility), the better the data generation algorithm.

In contrast, TRTR is training the above-mentioned machine
learning classification algorithms with real training datasets,
and evaluating on real testing datasets. TRTR is included in the
comparison for highlighting the ideal machine learning utility.

5) Statistical Similarity: Two metrics are used to quantita-
tively measure the statistical similarity between the real and
the synthetic datasets generated by GANBLR and its baseline
methods, that is:
• Jensen-Shannon Divergence (JSD). The JSD quantifies

the difference between the probability mass distribution
of individual categorical feature in the real data and the
synthetic dataset, and it is bounded between 0 and 1.

• Wasserstein Distance (WD). Similarly, WD captures the
earth moving distance on features between the real and
synthetic dataset.

B. Results Analysis

1) Results of Machine Learning Utility: Table IV provides
the averaged accuracy on Large, Medium and Small
datasets. It is clear that GANBLR outperforms all other baseline
methods in terms of accuracy based on TSTR . Particularly
on the small and medium datasets, GANBLR has significantly
better performance than other baseline methods. It is interesting
to see that GANBLR’s TSTR performance is close to TRTR
performance, while none of the other baseline methods have
the TSTR performance close to TRTR. Same findings could be
seen in Table III which provide detailed TSTR performance for
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Figure 2: Machine Learning Utility comparison of GANBLR and competing baseline models on different sized datasets in terms of box-plot
(Figure is seen best in color).

Method Large Medium Small
JSD WD JSD WD JSD WD

GANBLR 0.136 0.619 0.301 0.662 0.263 0.783
CTGAN 0.133 0.621 0.287 0.672 0.330 0.810
TableGAN 0.142 0.701 0.350 0.613 0.531 1.220
MedGAN 0.190 0.730 0.392 0.690 0.380 1.021

Table V: Comparison of Statistical Similarity measure of GANBLR
with competing baseline models.

all datasets. These results are extremely encouraging, as they
demonstrate that the synthetic data generated from GANBLR is
far more useful for the machine learning tasks than from any
other existing SOTA data generation algorithm.

While Figure IV provides averaged results, let us look at
distribution of accuracies for different datasets. In Figure 2, we
plot the box plots of the (TSTR) accuracy of GANBLR and its
baseline methods on 4 machine learning algorithms. Again, we
break the results in Large, Medium and Small datasets. We
plot TRTR for sake of comparison as well. It can be seen that no
matter the size of datasets, GANBLR significantly outperforms
all the baseline methods. Especially, for Small and Medium
datasets, the performance of GANBLR is extremely impressive
as the box plots of GANBLR (blue) match highly to those of
TRTR (purple).

2) Statistical Similarity: To obtain JSD results – for a
dataset, each feature from synthetic dataset is measured against
the same feature in real dataset in terms of JSD. We repeat the
process for all features, and for all datasets, and then, report
the averaged result in Table V – which as we discussed can be
seen as the measure of statistical similarly between synthetic
and original dataset.

It can be seen from Table V, that GANBLR stands-out
when compared to the other baseline methods. If it is not the
best, it is always the second best. Particularly, on Smaller
datasets, GANBLR has smaller JSD and WD values than all
the competing baselines, highlighting that it produces dataset
of superiour quality. On Medium datasets, GANBLR has
performance similar to CTGAN in terms of JSD and is the
second best, while has WD performance similar to TableGAN
and again is the second best. On Large datasets, GANBLR has
the best performance in terms of WD, though it marginally loses
to CTGAN in terms of JSD distance. Delving into why GANBLR

has sub-optimal results on Medium datasets – we believe that
this could be due to GANBLR’s generator – Bayesian Network’s
ability to generate some feature value which are rarely seen in
the real dataset. Clearly, statistical similarity evaluation based
on JSD and WD does not credits the generation of data which
is not present in real data, but is useful for classification task.

C. Interpretation Analysis

Let us study the interpretable capability of our proposed
model. We believe that a good interpretation in any tabular
data generator should:
• provide the local interpretability with clear understand-

ing of why a synthetic data point belongs to the generated
synthetic label at any time during the training. E.g., given
a generated synthetic data instance, the probability of each
possible synthetic label should be provided.

• provide the global interpretability on how the features
could impact the synthetic label generation generally. E.g.,
which feature has the largest impact on the synthetic label.

In order to investigate the interpretation capability of
GANBLR, we use the CAR dataset for multi-class classification.
Table VI shows the constrained weights from the generator
in GANBLR. Here, one instance from CAR synthetic dataset
is used for the local interpretability. It can be seen that the
weights learned from GANBLR can be used to determine
conditional probability i.e., P(Y |X). Therefore, during the
training, GANBLR can easily explain locally on why the
synthetic data feature from one instance belongs to the synthetic
label.

In order to determine the credibility of the local
interpretability of GANBLR, we employed the popular method
– LIME, which could explain why features belongs to certain
class on an instance level. Notably, we compare the weights
of Table VI with the LIME experiment utilizing the XGBT
algorithm (of course on the same data point) – Buying
= 3, Maint = 2, Doors = 0, Persons = 1,
Lug_boot = 2 Safety = 0, Class = 0. Note, in
Table VI, the probability on each class is sorted in descending
order with true class C = 0, achieving the highest probability
(shown in red), followed by second highest probability on
C = 2. It can be seen that in computing P(Y = 0|X), the
feature Safety = 0 and Persons = 1 contribute the
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most for this decision (probabilities shown in bold). Similarly,
the results of LIME in Figure 3 from left to right are also
sorted in descending order, and the sequence is exactly same
as that of Table VI. Moreover, it is interesting to see exactly
the same finding using LIME experiment, i.e., the highest
probability is on C = 0, and the decision for this class is also
based on Safety = 0 and Persons = 1 respectively. Of
course, due to the limited space, we have presented just one
demonstration of the interpretability comparison of GANBLR
and LIME. However, we found similar pattern of coherence of
GANBLR and LIME’s interpretability, which indicates that the
local interpretability of GANBLR is highly reliable even during
the training phase and is equivalent to the LIME, which is
basically interpretation of the model after the training.

In Figure 4, global interpretability of GANBLR at different
training stage can be drawn by listing the weights learned
from the generator in GANBLR. The darker color means
bigger impact while the lighter color means smaller impact
on the corresponding class. It can be seen that features
impacts differently on different class labels during training
phase, as can be seen at epoch = 1, epoch = 50 and
epoch = 100. We can see that features Persons and Safety
have the largest impact on the synthetic label 0, while features
Maints, Persons and Safety have the largest impact
on synthetic label 1, and features Persons, Lug_boot and
Safety have the largest impact on synthetic label 2. However,
feature Safety has far more impact on the synthetic label
3 than other 5 features, therefore, feature Safety is most
important factor to decide the car with high value which is the
meaning of C = 3. Again, the purpose of this analysis is to
demonstrate GANBLR’s global interpretable capability.

D. Ablation Analysis

To illustrate the impact of hyper-parameter k and the
discriminative component on GANBLR, we conducted the
ablation studies by changing the configuration of GANBLR
as below:
GANBLR-nAL As we discussed in Section III-D, the

GANBLR-nAL does not include the discriminator part and
the generator has slightly simplified objective function –
i.e., it is trained solely by maximizing log(P(Yg|Xk

g )) as
shown in Algorithm 2.

k=0 In this experiment, the Bayesian Network generator in
GANBLR has k = 0, i.e., we use a naive Bayes model,
this means that no feature interaction is modelled.

k=1 In this experiment, the generator in GANBLR is a Bayesian
Network with k = 1, i.e., order 1 feature interactions are
modelled.

k=2 In this experiment, the generator in GANBLR is a Bayesian
Network with k = 2, i.e., order 2 feature interaction are
modelled.

We compare the performance of GANBLR and
GANBLR-nAL using similar strategy that we used to
compare GANBLR with other competing baselines. It can
be seen from Table VII that GANBLR has better average
performance than GANBLR-nAL especially on large datasets

for various values of k. GANBLR is better than GANBLR-nAL
except for k = 1 for medium and k = 2 for small. This
highlights the significance of adversarial component in
GANBLR formulation. Nonetheless, the comparison also
highlights the usage of GANBLR-nAL as an effective sampling
method which does not employ a game-theoretic adversarial
learning.

Let us re-visit Table VII to see the impact of k. Well clearly,
it can be seen that higher values of k leads to better results
for large and medium datasets. However, for small datasets,
generally k = 1 has led to superiour performance. An obvious
reason for this is that k = 2 might be over-fitting on the small
datasets – and traditional bias-variance trade-off is coming into
effect. Interestingly, this study revealed suitability of GANBLR’s
hyper-parameters to various sized datasets.

V. CONCLUSION

In this work, we presented a novel technique to generate
tabular data utilizing the GAN strategy. Our proposed GANBLR
framework relies on discriminatively trained Bayesian Networks
as the generator as well as discriminator, which learns by
optimizing a game-theoretic objective function. We showed
that GANBLR not only advances the existing SOTA GAN-
based models but also leads to a framework with excellent
interpretability during the training. We evaluated the data
generation performance of GANBLR by comparing it against
several SOTA baselines and analysed its performance in terms
of machine learning utility as well as statistical similarity.
The results show that the synthetic datasets generated from
GANBLR have the best performance on machine learning utility
and statistical similarity comparable to SOTA methods. The
remarkable results of GANBLR demonstrate its potential for a
wide range of applications which could greatly contribute to
tabular data generation and augmentation in various sectors
such as banking, insurance, health and many other industries.
We highlight some future works as:
• We have constrained ourselves to k ≤ 2 in this work.

We are interested to see variation in the performance of
GANBLR as the value of k is increased.

• We have focused mainly on restricted BN model i.e., KDB
models in our current GANBLR formulation – we are keen
to study the model under un-restricted Bayesian Network
models.

• Enhancing GANBLR to generate numerical attributes is
also one direction, we are exploring.
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