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Abstract

Generative Adversarial Networks (GAN) models have led to a

major breakthrough in data generation of various sorts. Over

the years, we have seen several applications of GAN-based

learning for tabular data generation as well. Very recently,

GAN-based learning by incorporating Bayesian Networks (BN)

as generator and discriminator – GANBLR, has shown to lead

to state-of-the-art (SOTA) results for tabular data generation.

Despite the impressive performance, GANBLR has an inherent

weakness that it can only generate data with categorical

attributes. Additionally, the model is trained and tested only

with a restricted Bayesian Network. In this work, we have

proposed an extension over GANBLR framework – GANBLR++,

that has the capacity to generate numeric attributes, by

leveraging Dirichlet Mixture Model. We also leverage

unrestricted BN in GANBLR framework, and discuss how the

use of unrestricted BN can lead to better quality data, as well

as more interpretable model. We evaluate the effectiveness of

GANBLR++ on wide range of datasets by demonstrating that it

generates data of better quality as compared to existing SOTA

models for tabular (numeric and categorical) data generation

such as CTGAN, MedGAN and TableGAN.

1 Introduction

Generative Adversarial Networks (GAN) models have led
to a massive breakthrough in data generation, especially
in computer vision where data is mostly images [6]. Their
application to other domains such as text mining and
natural language processing where data takes the form
of text and speech has resulted in generating excellent
quality data as well. GAN-based models leverage deep
Artificial Neural Networks (ANN) such as Convolutional
Neural Networks (CNN) to exploit an apparent structure
in the data to learn to generate artificial (or fake)
data. However, such structure is not present in tabular
datasets, hindering the application of models like CNN [1]
in GAN-based models. Another challenge brought by
tabular dataset is that they constitute of varying types
of attributes such as numeric, ordinal, categorical, etc.
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Dealing with these different data types is not trivial, as
each attribute type has its own peculiar traits.

Despite these challenges, the application of GAN-
based models to tabular data has seen a lot of interest
over the past few years, and in fact, has led to some
state-of-the-art (SOTA) results for tabular data generation
tasks with models such as CTGAN [9], TableGAN [11],
MedGAN [8], etc. Very recently another breakthrough
has been achieved where authors utilized GAN-based
learning framework for training Bayesian Networks as
both generator and discriminator, leading to framework
known as GANBLR [13]. It was shown that GANBLR

leads to massive improvements over previous state-of-
the-art methods, as summarized in Table 1. Despite
impressive results, GANBLR has some inherent weaknesses.
First, the model can only generate categorical (nominal)
attributes. Note, CTGAN can generate both categorical
and continuous (numeric) attributes. How to incorporate
the capacity for numeric attributes generation in GANBLR

has been the motivation of this work. Secondly,
despite being proposed as a general model that can
incorporate any Bayesian Network (shown in Figure 1),
GANBLR models is only trained and tested with restricted
Bayesian Network only. The efficacy of the model with
a full unrestricted Bayesian Network is still to be tested.
This has been the secondary motivation for this work.
In this work, we propose an extension of GANBLR model
known as GANBLR++, which incorporates the capacity
of generating the numerical feature through a BN,
by using Dirichlet Mixture Model in the generation
process. Secondly, instead of using the restricted
Bayesian model such as K-Dependence Bayesian Network
(KDB), we use an unrestricted BN to leverage the full
benefit of using a Bayesian Network.

Numeric attributes are prevalent in tabular datasets.
GANBLR handles numeric datasets by discretizing them,
and then learns to produce a discretized value (bin
number) instead of the actual numeric value. Though
discretization offers a simple strategy to handle numeric
attributes in data generation algorithm that can only
process discrete features, there are still scenarios where
a numeric value is expected. A typical discretization
process used in GANBLR is shown in Figure 2. GANBLR
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Figure 1: GANBLR Framework [13].

discretizes the data beforehand, that means that if we
have a feature X, it gets allocated a value from 1 to 6 if
we chose to have 6 bins. GANBLR learns to sample the
values from 1 to 6. Sure, one can use the bin ranges that
is αi and αi+1 to determine a numeric range in which
the newly generated discrete data falls, but this range
can be arbitrary large in some case. One simple strategy
can be to take the mean/median/mode of the values
in the bin in pursuit of generating a numeric value in
GANBLR, but it will result in duplicating values being
produced. Clearly, we need an elegant way to produce
numeric data in GANBLR framework. The trouble with
typical discretization is that it offers very little capacity
to generate the numeric values back once it is discretized
1. In this work, we make use of Dirichlet Mixture

Model (DMM). We first identify various modes to model
a numeric feature distribution, and then represent any
numeric value based on its contribution to each mode.
During sampling, the discrete value of the numerical
feature could be directly sampled from the distribution
of the particular mode.

Bayesian Networks (BN) are an excellent framework
for incorporating auxiliary information and they lead
to models that are interpretable. Though, the original
GANBLR framework proposed the use of Bayesian Net-
works for generator and discriminator – the authors

1Information is lost except the location of boundaries.

Datasets GANBLR CTGAN Improvement

Intrusion 0.9378 0.9102 3.1%
Pokerhand 0.5783 0.4673 23%
Adult 0.8429 0.8012 5.0%
Chess 0.8478 0.7870 7.2%

Table 1: Percentage improvement of GANBLR over CTGAN

in terms of Machine Learning Utility based on Train-on-
Synthetic and Test-on-Real, on 4 datasets.

Figure 2: Example discretization of a numeric attribute.

only tested the model with restricted BN such as k-
Dependence Bayesian Network (KDB). A KDB is advan-
taged as the structure learning is very quick and simple,
as it is based on sufficient statistics such as Mutual

Information and Conditional-Mutual-Information.
However, this leads to a structure that is hard to in-
terpret, and also overly complicated. E.g., for a KDB

model with k = 2, each attribute must take two other at-
tributes as its parents. Full unrestricted BN, on the other
hand, can have a arbitrary number of parents for each
attribute, but can be much simpler than a high-order
KDB. In this work, we have proposed a new formula-
tion GANBLR++, which relies on building an unrestricted
Bayesian Network and employs DMM to generate numeri-
cal data as well. We claim that GANBLR++ is a significant
improvement over GANBLR which we demonstrate by a
variety of experiments on a wide range of datasets. We
formalize the contributions of this work as:

• We propose a novel model of tabular data gener-
ation, namely GANBLR++ that can generate both
categorical and numeric data. We demonstrate that
it can generate data of much better quality than
existing SOTA models of numeric data generation.

• GANBLR++ can be utilized with both restricted BN

such as KDB as well as unrestricted BN. Additionally,
we claim to be the first work that has exploited
the discriminative training of an unrestricted BN

(that is used as a discriminator component in GAN

formulation).

• To the best of our information, we claim to be the
first work that utilizes DMM in the context of BN.
Traditionally, the practice is to discretize numeric
attributes for BN with typically discretization meth-
ods.

• We compare GANBLR++ to existing SOTA GAN models
on 15 public tabular datasets. The results demon-
strate that GANBLR++ can outperform in terms
of Machine Learning Utility 2 and other sta-
tistical similarity measures.

2Machine learning utility means that the synthetic data is used
to train the model and then use real data to test the performance.
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The rest of this paper is organized as follows. We will
discuss preliminary and related work in Section 2. We
discuss our proposed formulation GANBLR++ in Section 3,
discussing the strategy to generate numeric data as
well as the use of unrestricted BN. The experimental
evaluation of our proposed framework GANBLR++ is given
in Section 4. We conclude in Section 5, with pointers to
future works.

2 Preliminaries and Background Work

In this section, let us discuss the preliminary
work GANBLR. Later we will delve into some state-of-
the-art models for tabular numeric data generation.

2.1 GANBLR Framework Like typical GAN-based learn-
ing, GANBLR utilizes a game theoretic approach. It is
based on adversarial training between two component –
a generator model (denoted as G), which tries to gen-
erate the synthetic data and the discriminator model
(denoted as D), which tries to discern the difference
between the synthetic and the real data [4]. A typi-
cal tabular dataset with m instances and n features is
denoted as: Ddata = [(X(k), Y ], which of course is consid-
ered as the (real) original dataset for adversarial training.
Here, X(k) = [x1,x2..,xm] and xi ∈ Rn. Correspond-
ingly, the class label are denoted as: Yg = [y1, y2.., ym].
In any standard tabular dataset Ddata, the features can
have k-order feature interactions, which represent the
maximum level of interaction among the features. This
is represented by the super-script k in X(k).

Notably, in vanilla and conditional GAN models, the
generator model uses the random noise to produce
the adversarial samples. That is, we assume that
the real dataset Ddata = [(X(k), Y )] belongs to the
distribution Pdata(·), and the generator model G is
trained to approximate the Pdata(·) with random noise,
which is sampled from the distribution PZ(.). The GAN

formulation leads to the following objective function:

(2.1)

max
D

min
G

ED∼Pdata(.)[log D(Ddata)]

+ EZ∼PZ(.)[log(1−D(G(Z)︸ ︷︷ ︸
Sdata

))].

Here, the synthetic dataset Sdata = [(X̄(k), Ȳ )], where
X̄(k) = [x̄1, x̄2.., x̄m] and x̄i ∈ Rn. Sdata contains the
same order (k) of the feature interactions as original
dataset Ddata. It can be seen that the main task for the
discriminator model D is to distinguish between Ddata

and Sdata and back-propagate the discrimination loss to
the generator model for producing better Sdata. To do
the training for discriminator model, the auxiliary label
Yd = 1 and Yd = 0 is added to Ddata and Sdata.

In GANBLR, the generator model G plays two roles:

• Learning the parameter of the BN (denoted as BNe)
by optimizing the discriminative objective function
on conditional log-likelihood log(P(Y |X(k))). Here
the BNe is learned by constraining the parameter
which could be actual conditional probabilities
according to the work of [10].

• Sampling the synthetic data from BN and inputting
the synthetic dataset Sdata with original dataset
to discriminator for minimizing the loss on log(1−
D(G(.)) or maximizing the − log(1−D(Sdata)). In
this role, the G is performing in generative mode to
sample data from learned BN and there is no input
needed for this sampling.

The generator model G of GANBLR can seamlessly
perform the two roles. That is, the more accurately
trained BN could provide better synthetic dataset Sdata

and therefore, the smaller loss of log(1 −D(G(.))) on
discriminative model.

The discriminator D in GANBLR, is again a BN

(denoted as BNd) with the same structure as that of the
BN of the generator model. However, the parameter of
BNd is not constrained and the training of D is based on
maximizing the discriminative loss, i.e., log D(Ddata) +
log(1−D(Sdata)).

Training in GANBLR framework follows the game the-
oretic approach, where the generator model G tries
to produce better synthetic data by minimizing the
− log(P(Y |X(k))) and log(1−D(Sdata)); the discrimina-
tor D maximizing the log D(Ddata) + log(1−D(Sdata)),
leading to following objective function:

(2.2)
max
θdθdθd

min
θgθgθg

log D(Ddata) + log(1−D(Sdata))

− log(P(Y |X(k))).

It can be seen that minimizing the negative conditional

log-likelihood − log(P(Yg|X(k)
g )) plays an important role

in GANBLR’s strategy to produce better synthetic data.

2.2 Related Work Other than GANBLR, there are
two kinds of adversarial-trained tabular data genera-
tor: vanilla GAN-based tabular generator and conditional
GAN based tabular generator. Several famous models
fall in the category of vanilla GAN-based models, such as
MedGAN [8], TableGAN [11], PATEGAN [5]. MedGAN utilizes
the auto-encoder architecture and can generate both cat-
egorical and numerical attributes. TableGAN deploys via
the convolutional neural network architecture. PATEGAN
is particularly designed to prevent the privacy attacks by
adding the differential privacy. The most critical draw-
back on vanilla GAN-based tabular generators is these
models are not able to generate the synthetic data with
a particular (or specified) feature-value. In contrast,
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Figure 3: Illustration of numerical sampling from G in
GANBLR++.

conditional GAN-based tabular data generator uses the
conditional-vector to specify the particular feature value
or class label to generate. The most successful work is
the well-known CTGAN. CTGAN deploys the mode-specific
normalization with training-by-sampling to better gen-
erate both categorical and numeric features.

3 Methodology

Let us discuss our proposed GANBLR++ algorithm in this
section. We will start by explaining the two novel
components, i.e., its strategy to a) generate numeric
data and b) use of unrestricted BN.

3.1 Component I – Numerical Sampling In-
spired from Conditional-GAN [9], we propose to use the nu-
merical sampling in the G component of GANBLR, based
on the Dirichlet Process Gaussian Mixture Model

– DP-GMM. Bayesian non-parametric models are the mod-
els where the number of parameters grow freely with
the amount of data provided [12]. So, instead of tuning
the parameter of cluster number as is done in VGM and
standard GMM, the cluster number in DP-GMM is allowed
to grow as more data is observed during the training
of DP-GMM. We have proposed two steps to implement
the numerical sampling in this work: Dirichlet Mode

Discretization and Specific Mode Sampling. Let
us discuss these two steps in detail in the following.

3.1.1 Dirichlet Mode Discretization Any given
numeric attribute can have non-Gaussian or multi-modal
distribution. The critical question is how to determine
the number of modes. As forehand mentioned, we have
made use of non-parametric DP-GMM to automatically
determine the number of modes. The Dirichlet

Process firstly samples some unbounded points (atom)
to represent the cluster centers (mean values in the
distribution) for any given numeric attribute. Once the
cluster centers are drawn, the Gaussian distributions
can be created around the corresponding cluster centers.

Finally, the observed data point is assigned to each
cluster during the inference to maximize the likelihood
for obtaining the optimized number of clusters. The
following equation can be used to define a density
function of DP-GMM: P(x) =

∫
dϑK(x|ϑ)G(ϑ). Here P(x)

represents the probability of input x belonging to a mode.
K(x|ϑ) = N (x|µ, S) represents a Gaussian distribution
with parameters – [µ, S] and G(ϑ) represents a prior
distribution over parameter ϑ, which is the mean value
of the Gaussian (or the cluster center).

In Dirichlet Process formulation, we use G(ϑ) to
sample parameters [µ, S] for a Gaussian distribution. At
the time of inference, we have a finite number of clusters,
and their index is represented as ζc. We use notation
Pζc(xi) to represent the probability of xi belonging to
cluster ζc. Figure 3, illustrates a case where two modes
(clusters) ζc=0 and ζc=1 have been identified. Since,
we know the probability of each mode (Pζ) – for a
numeric value, xi, we can determine the mode (cluster)
of xi by comparing the Pζc=0

(xi) with Pζc=1
(xi). Next,

as depicted in the R.H.S of Figure 3, the distance d1

between value xi and its mode center µ1 is computed

after normalization as:
(
xi−µ1

S1

)
. Now, the issue is

that GANBLR relies on discrete model BN to learn its
parameters, therefore, we must find a way to map the
numeric values (d1) to discretized values. We have
established a simple strategy to covert di into a discrete
value. We make use of the cluster to which xi belongs
and make the following transformation for each xi and
its related di:

(3.3) ζαc
c = ζc ⊕ 1τ=1αc.

where the αc is defined as:

αc = φ(dc),

(3.4)

dc =

(
xi − µc
Sc

)
,

φ(dc) =


+1|−1 |dc|≤ Sc ∧ dc > 0|dc < 0;

+2|−2 Sc < |dc|≤ 2Sc ∧ dc > 0|dc < 0;

+3|−3 2Sc < |dc|≤ 3Sc ∧ dc > 0|dc < 0;

∞|−∞ |dc|≥ 3Sc ∧ dc > 0|dc < 0.

.

It can be seen that we have designed two scenarios
through the use of indicator function. Well, if τ 6= 1, the
final discretized value for xi is just its cluster center’s
index – ζc. Otherwise, the value xi is discretized based
on Equation 3.4 to ζαc

c . We will discuss the difference
of ζc and ζαc

c in the ablation study in experiment. We
found that using the discretization of Equation 3.4 can
lead to better performance.
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3.1.2 Mode-Specific Sampling When the genera-
tor G in GANBLR starts to sample numerical values say
x̄ for synthetic dataset Sdata, the discrete value ζαc

c (or
ζc) will be sampled first for any continuous attribute.
Afterwards, the x̄ will be sampled based on ζαc

c . For
instance, if ζαc

c has an associated Gaussian distributions –
N (x̄|µc, Sc), the continuous value x̄ can be sampled, with
following condition fulfilled: αc < | x̄−µc

Sc
|≤ αc + 1. Fi-

nally, the x̄ is obtained by checking whether (x̄−µc) > 0
holds. The following equation summarizes our Mode

Specific Sampling as:

x̄ ∼ N (x̄|µc, Sc)(3.5)

Such that
αc < |

x̄− µc
Sc

| ≤ αc + 1

sign(x̄− µc) = sign(αc)

One can also directly use the discrete value ζαc
c for

synthetic dataset Sdata. Therefore, GANBLR++ has the
flexibility to work on both discrete and continuous data
types.

3.2 Component II – Unrestricted BN The struc-
ture learning for BN is the process of learning the struc-
ture of the directed acyclic graph (DAG) from the given
dataset (Ddata). The structure of BN indicates the fea-
ture interactions and is highly interpretable. In typical
restricted mode, such as KDB, the feature interaction
are limited to a maximum level, which means each at-
tribute can only connect to a specified number of other
attributes (parents). In the proposed GANBLR++, we have
aimed to use unrestricted structure learning. There are
two steps within the structure learning of the proposed
GANBLR++:

• Scoring the current structure G given Ddata.

• Updating (adding, deleting, reversing connection)
the structure G until convergence.

The scoring step can be specified as:

(3.6) Score(G : Ddata) = LL(G : Ddata)− λ(|D|)|G|

where LL(G : Ddata) is the log-likelihood score to
indicate how well the BN with structure G can fit the
data, and λ(|D|)|G| is the regularization term to avoid
over-fitting.. Note, the function λ(·) here is log(·)/2
and, therefore, the criterion is Bayesian Information

Criterion.

3.3 GANBLR++ Algorithm The proposed GANBLR++

framework is based on the training of GANBLR, but with
the two modifications as explained in the previous two
sub-sections. The generator model G (parameterized by

Algorithm 1 Algorithm GANBLR++

Input: Original data - X(k), Y
Output: Synthetic data - X̄(k), Ȳ

1: Sample m instances (X(k), Y ) ∼ Pdata(.)
2: Obtain G by optimizing eq. (3.6)
3: for iteration t ⊂ T in training do
4: if x ⊂ X(k) is numerical then
5: Obtain ζc, µc, Sc
6: Discretize x to ζαc

c via eq. (3.4)
7: Obtain X(k), Y
8: end if
9: Obtain θgθgθg by optimizing G with G via eq. (2.2).

10: Sample Sdata

11: for step q ⊂ Q in discriminator D do
12: Obtain θdθdθd by optimizing D via eq. (2.2)
13: end for
14: end for
15: if x̄ ⊂ X̄(k) is numerical then
16: Mode Specific Sampling x̄ via eq. (3.5)
17: Obtain X̄(k), Ȳg
18: end if
19: return Sdata ≡ X̄(k), Ȳ

θgθgθg) and the discriminator model D (parameterized by
θdθdθd) are trained in turns for updating each model’s param-
eters. Ddata is first processed by the Dirichlet Mode

Discretization method as discussed in Section 3.1.1.
It is later used to learn the structure G of BN, and lastly
it is employed to train the generator model G and the
discriminator model D based on eq. (2.2). The complete
algorithm of GANBLR++ is given in algorithm 1.

3.4 GANBLR++ (Disc) Variant It can be seen from al-
gorithm 1, that we have the capacity to generate both
numeric and categorical data. For a better comparison,
and study its effectiveness, we have identified following
two variants:

• GANBLR++ (Disc) – is the version where we use DMM
for discretization but do not use Mode-Specific
Sampling. This version should be compared against
standard GANBLR model, which handles numeric
attributes through a pre-step discretization.

• GANBLR++ – is the version where we use both DMM

as well as mode-specific sampling. This version
should be tested with other SOTA numeric tabular
data generation models such as CTGAN, TableGAN
and MedGAN.

The GANBLR++ and GANBLR++ (Disc) are both evaluated
in Section 4.
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Dataset m n C Size

Intrusion 4M 41 2 Large

Pokerhand 1M 11 10 Large

Covtype 581012 55 7 Large

Shuttle 58000 9 7 Large

Connect-4 67557 42 3 Large

Credit 50000 31 2 Medium

Adult 50000 14 2 Medium

Chess 28056 6 7 Medium

letter rocog 20000 16 26 Medium

Magic 19020 11 2 Medium

Nursery 12960 8 5 Small

Sign 6500 8 3 Small

Satellite 6435 36 7 Small

Loan 5000 13 2 Small

Car 1728 6 2 Small

M denotes a million. m, n, C denote the number of
instance, attributes and number of classes, respectively.

Table 2: Data Statistics.

4 Experiment

Let us start by discussing our experimental set-up first
before we delve into empirical evaluation of our proposed
framework GANBLR++.

4.1 Experiment setup

4.1.1 Datasets There are a total of 15 datasets that
we have used in the experiment – 13 datasets are from
UCI datasets and 2 from Kaggle repository (Credit and
Loan). Each dataset has the target attribute and a set
of independent attributes, and are used for classification
task. Among all datasets, 5 datasets have more than
50K instances and are denoted as Large, whereas, 5
datasets have less than 50K instances and more than
15K instances, and are denoted as Medium. Finally, the
remaining 5 datasets have less than 15K instances and
are denoted as Small. The statistics of the data are
summarized in Table 2

4.1.2 Baselines and Evaluation Metric We com-
pare the following methods in our experiments
– GANBLR++, GANBLR++ (Disc) (described in Sec-
tion 3.4), GANBLR [13], and CTGAN, TableGAN, MedGAN

as described in Section 2.
All baseline models are trained with 150 epochs for

5 Large datasets, and 100 epochs for the Medium and
the Small datasets. The experiment is repeated 3 times
with 2 fold cross validation and the average results are
reported. As, many datasets in Table 2 are multi-class,
therefore the accuracy is used in the experiment.

4.1.3 Configuration and Running Environment
Unlike GANBLR, we do not have to specify k for BN in
GANBLR++, as it is based on unrestricted BN. The default
value τ is set to 1 for indicator function 1 in eq. (3.4).
GANBLR++ is coded in Python 3.7 in Tensorflow 2.5

framework, with 8 core Intel i8 CPU machine with 32
GB RAM memory.

4.1.4 Machine Learning Utility There are two
commonly used strategies to evaluate the machine
learning utility for synthetic data: TSTR: Train-
ing on Synthetic data, Testing on Real data; TRTR:
Training on Real data, and Testing on Real data.
In order to obtain the TSTR and TRTR perfor-
mance of GANBLR++ and the other baseline models,
4 commonly used machine learning classification al-
gorithms are used here, i.e., Logistics Regression

(LR), Muti-layer-Perceptron (MLP), Random Forest

(RF), and Extreme Gradient Boosting Tree (XGBT).
For obtaining TSTR, the real dataset is firstly divided

into real training and real testing datasets: the real
training dataset is used to train the GANBLR++ and
baseline models. Once training is completed, the
synthetic datasets are obtained. Then the synthetic
datasets are used to train the above 4 machine learning
classification algorithms, which will be evaluated on
the real testing datasets. In short, the TSTR can best
qualify whether the synthetic dataset can be used as the
substitute of the real dataset in machine learning tasks.
In contrast, the TRTR mainly serves as a baseline, which
indicates what sort of performance we should expect for
TSTR.

4.1.5 Statistical Similarity To compare the qual-
ity of the synthetic datasets, particularly for synthetic
datasets under numerical sampling, it is important to
also measure the statistical similarity between the real
and the synthetic datasets. Similar to work of [13],
two metrics are used to measure the statistical similar-
ity: Jensen-Shannon Divergence (JSD) and Wasserstein
Distance (WD).

4.2 Machine Learning Utility Results Anal-
ysis Table 3 reports the detailed results from
GANBLR++ (Disc), GANBLR++ and all other baseline mod-
els. It could be seen that, the GANBLR++ (Disc) and
GANBLR++ outperform other methods on almost all
the datasets. Note, if all features in a dataset are
categorical, we have omitted the results of GANBLR++

on these datasets (namely – Poker-hand, Connect,

Chess, Nursery, Car). GANBLR++ (Disc) demon-
strates the effectiveness of using unrestricted BN over
standard GANBLR models on these datasets, as it wins on
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all four out of five datasets (only loss is on car dataset).

4.2.1 Results of Machine Learning Utility with-
out numerical sampling Table 4 provides the av-
eraged accuracy on all 15 Large, Medium and Small

datasets. It is clear that GANBLR++ (Disc) outper-
forms all other baseline methods which includes the
current SOTA model GANBLR in terms of TSTR perfor-
mance. Particularly on small and medium datasets,
GANBLR++ (Disc) and GANBLR have significantly bet-
ter performance than other baseline methods. But
GANBLR++ (Disc) provides a much better results on
Large, Medium and Small datasets. It is interesting to
see that for GANBLR++ (Disc) and GANBLR, the TSTR

performances are close to TRTR performance, while none
of the other baseline methods have the TSTR performance
close to TRTR.

4.2.2 Results of Machine Learning Utility with
numerical sampling To better evaluate the numerical
sampling capability of GANBLR++, the comparison has
been made between GANBLR++ and selected baseline
models. Note, the baseline models are selected which
have the capability of providing numerical attributes
in synthetic datasets 3. Table 5 shows the comparison
results. It can be seen from the results, that GANBLR++

outperforms over all selected baseline models on Large,
Medium and Small datasets.

4.3 Statistical Similarity Results Analysis To
obtain JSD and WD results – for a dataset, each attribute
from synthetic dataset is compared against the same
attribute in real dataset in terms of JSD and WD. We
repeat the process for all attributes, and for all datasets,
and then, report the averaged result separately with or
without numerical sampling.

4.3.1 Results of Statistical Similarity without
numerical sampling It can be seen from Table 6 that
GANBLR++ (Disc) outperforms all baselines on Larger

and Small datasets. It is also interesting to mention
that the GANBLR++ (Disc) is better than GANBLR. This
highlights that GANBLR++ (Disc) produces dataset of
superior quality. On Medium datasets, the results
between GANBLR++ (Disc) and GANBLR are very close
and CTGAN wins on the JSD distance while TableGAN

wins on the WD distance. However, the difference
between GANBLR++ (Disc) and the baselines based on
the statistical similarity from Medium datasets is quite
minor. One reason for the results on Medium datasets –

3Only datasets with numeric features are used, the results
represents average over 10 datasets.

Dataset Model GANBLR++ (Disc) GANBLR++ GANBLR CTGAN TableGAN MedGAN

Intrusion

LR 0.9402 0.9278 0.9316 0.9232 0.792 0.826
MLP 0.9219 0.9017 0.901 0.926 0.739 0.803
RF 0.9563 0.9381 0.9398 0.893 0.768 0.812
XGBT 0.9581 0.9290 0.9318 0.918 0.721 0.831

Pokerhand

LR 0.769 0.533 0.469 0.471 0.371
MLP 0.778 0.5518 0.435 0.39 0.382
RF 0.781 0.572 0.502 0.41 0.39
XGBT 0.783 0.5837 0.511 0.423 0.402

Covtype

LR 0.729 0.725 0.653 0.671 0.57 0.472
MLP 0.721 0.711 0.673 0.6961 0.602 0.455
RF 0.733 0.731 0.703 0.705 0.582 0.466
XGBT 0.740 0.735 0.691 0.6827 0.591 0.497

Shuttle

LR 0.998 0.991 0.996 0.951 0.927 0.988
MLP 0.991 0.989 0.993 0.972 0.912 0.982
RF 0.995 0.993 0.9931 0.967 0.929 0.992
XGBT 0.997 0.990 0.996 0.9801 0.92 0.991

Connect

LR 0.7543 0.7517 0.702 0.663 0.692
MLP 0.789 0.783 0.727 0.652 0.701
RF 0.803 0.791 0.682 0.673 0.691
XGBT 0.812 0.803 0.709 0.656 0.712

Credit

LR 0.9998 0.9998 0.9998 0.9979 0.9981 0.998
MLP 0.9999 0.9998 0.9997 0.999 0.9972 0.9982
RF 0.9994 0.9992 0.9996 0.9981 0.9987 0.999
XGBT 0.9993 0.9995 0.9998 0.9976 0.998 0.998

Adult

LR 0.79 0.7713 0.74 0.787 0.757 0.737
MLP 0.853 0.836 0.842 0.831 0.761 0.739
RF 0.821 0.819 0.81 0.792 0.783 0.721
XGBT 0.825 0.827 0.851 0.839 0.775 0.733

Chess

LR 0.8617 0.8478 0.693 0.722 0.577
MLP 0.889 0.877 0.673 0.735 0.552
RF 0.903 0.893 0.701 0.714 0.56
XGBT 0.901 0.882 0.723 0.751 0.557

Letter_recog

LR 0.722 0.702 0.689 0.531 0.462 0.47
MLP 0.753 0.715 0.739 0.601 0.392 0.462
RF 0.732 0.710 0.713 0.566 0.452 0.47
XGBT 0.740 0.720 0.736 0.539 0.478 0.483

Magic

LR 0.803 0.797 0.78 0.656 0.641 0.648
MLP 0.819 0.802 0.789 0.672 0.632 0.668
RF 0.833 0.813 0.803 0.698 0.665 0.671
XGBT 0.845 0.822 0.812 0.681 0.632 0.676

Nursery

LR 0.907 0.8819 0.793 0.678 0.569
MLP 0.922 0.902 0.839 0.681 0.575
RF 0.927 0.919 0.802 0.676 0.582
XGBT 0.931 0.93 0.836 0.688 0.585

Sign

LR 0.652 0.633 0.61 0.472 0.482 0.389
MLP 0.673 0.662 0.649 0.479 0.473 0.401
RF 0.681 0.689 0.61 0.4563 0.491 0.412
XGBT 0.689 0.688 0.636 0.489 0.499 0.418

Satellite

LR 0.853 0.837 0.85 0.496 0.502 0.405
MLP 0.876 0.870 0.887 0.502 0.492 0.388
RF 0.880 0.863 0.879 0.51 0.511 0.392
XGBT 0.898 0.859 0.89 0.499 0.502 0.41

Loan

LR 0.7725 0.7572 0.772 0.706 0.756 0.386
MLP 0.828 0.803 0.801 0.683 0.762 0.392
RF 0.831 0.820 0.816 0.731 0.757 0.406
XGBT 0.840 0.819 0.822 0.739 0.759 0.403

Car

LR 0.81 0.85 0.713 0.62 0.611
MLP 0.822 0.865 0.686 0.59 0.582
RF 0.841 0.873 0.719 0.621 0.575
XGBT 0.837 0.891 0.721 0.633 0.591

Average 0.8418 0.8298 0.8151 0.7145 0.6651 0.6108

Table 3: Machine Learning Utility on all datasets in terms
of TSTR.

Method

L˜Accuracy% M˜Accuracy% S˜Accuracy%
TRTR

80.84% 86.80% 84.62%
TSTR

GANBLR++ (Disc) 79.32% 86.10% 82.56%
GANBLR 78.85% 84.02% 81.67%
CTGAN 75.27% 74.88% 64.37%
TableGAN 66.95% 71.72% 60.87%
MedGAN 67.28% 68.58% 47.36%

Table 4: Machine Learning Utility comparison of
GANBLR++ (Disc).
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Method

L˜Accuracy% M˜Accuracy% S˜Accuracy%
TRTR

78.90% 86.27% 82.69%
TSTR

GANBLR++ 78.88% 85.57% 81.30%
CTGAN 77.27% 72.11% 66.77%
TableGAN 63.65% 70.29% 58.29%
MedGAN 65.71% 66.36% 48.29%

Table 5: Machine Learning Utility comparison of GANBLR++

Method
Large Medium Small

JSD WD JSD WD JSD WD

GANBLR++ (Disc) 0.130 0.589 0.313 0.680 0.201 0.751
GANBLR 0.136 0.619 0.301 0.662 0.263 0.783
CTGAN 0.133 0.621 0.287 0.672 0.330 0.810
TableGAN 0.142 0.701 0.350 0.613 0.531 1.220
MedGAN 0.190 0.730 0.392 0.690 0.380 1.021

Table 6: Statistical Similarity Comparison of
GANBLR++ (Disc).

we believe that this could be due to GANBLR++ (Disc)’s
generator – Bayesian Network’s ability to generate some
attribute value which are rarely seen in the real dataset.
The same reason applies to GANBLR as well.

4.3.2 Results of Statistical Similarity with nu-
merical sampling For the statistical similarity com-
parison with numerical sampling, as above mentioned,
only 10 datasets are used in the comparison. Based on
Table 7, it can be seen that the statistical similarity
of GANBLR++ stands out from all the other baselines on
Large, Medium and Small datasets. It only loses on
JSD from Medium datasets. The results are encouraging
and show that the distribution of numerical attributes
from the synthetic dataset is almost the same as the real
datasets.

To better illustrate the quality of the numeri-
cal sampling from GANBLR++, three attributes Age,
Education-Num and Hours-per-week are selected from
the dataset Adult, then the actual and estimated densi-
ties (distributions) are presented in Figure 4. Notably,
the distributions with red and green color are the sam-
pled synthetic distributions from GANBLR++ and CTGAN

respectively, and the black represents the real data dis-
tribution. It can be seen that the distribution from
sampled synthetic dataset obtained from GANBLR++ and
real dataset matches for all the three attributes. Par-
ticularly, for attribute Education-Num, the difference
can be seen as really minor. However, the distribution
from sampled synthetic dataset obtained from CTGAN and
real dataset are not well matched. E.g., for attribute
of Hours-per-week, the CTGAN failed to find the correct
number of modes.

As GANBLR++ make use of BN to learn the fea-
ture interaction among attributes, the joint distribu-

Method
Large Medium Small

JSD WD JSD WD JSD WD

GANBLR++ 0.117 0.520 0.297 0.533 0.129 0.570
CTGAN 0.128 0.571 0.257 0.562 0.270 0.603
TableGAN 0.130 0.621 0.327 0.593 0.341 1.031
MedGAN 0.177 0.703 0.356 0.637 0.353 1.021

Table 7: Statistical Similarity Comparison of GANBLR++

Figure 4: Selected attributes of Age, Education-Num,

Hours-per-week’s distributions estimated by GANBLR++ and
CTGAN.

tion of sampled synthetic dataset on those attributes
that interacted with each other should also be preserved
and should lead to better quality data as compared
to the CTGAN model, which does not have an explicit
feature interaction capability. Figure 5 illustrate the
joint distribution on Class:Age, Class:Education-Num
and Class:Hours-per-week from both sampled syn-
thetic dataset and real dataset. The blue color rep-
resent the joint distribution for real dataset, and orange
color represent the joint distribution for sampled syn-
thetic dataset from either GANBLR++ or CTGAN. It is clear
to see that the difference of joint distribution between
GANBLR++ sampled synthetic dataset and real dataset is
really minor. In contrast, the difference of joint distribu-
tion from comparison between CTGAN sampled synthetic
dataset and real dataset is obvious. The above interest-
ing patterns can also support the TSTR results in previous
experiment – as the synthetic dataset from GANBLR++

is not only similar enough to the real dataset but also
better at preserving the feature interactions.

4.4 Ablation Analysis Over τ To illustrate the
impact of hyper-parameter τ under numerical sampling
on GANBLR++, we conducted the ablation studies by
switching the value of τ between 0 and 1. Specifically,
when τ = 1, the discrete value on given numerical value x
is ζαc

c . Whereas, when τ = 0, the discrete value on given
numerical value x is ζc, which is just the the cluster index.
We compare the TSTR performance between GANBLR++

with τ = 1 and τ = 0. It can be seen from Table 8 that
when τ = 0, the GANBLR++ always has worse performance
comparing to τ = 1. Particularly, the Large datasets
have suffered most. This pattern can be explained as the
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Figure 5: Selected joint attribute tuples of class:Age, class:Education-Num, class:Hours-per-week’s distributions
estimated by GANBLR++ and CTGAN.

GANBLR++ Performance

Large Medium Small

τ = 1/τ = 0 τ = 1/τ = 0 τ = 1/τ = 0
-8.13% -5.70% -7.82%

Table 8: Ablation Analysis Over τ

Large datasets requires more detailed feature interaction
and when τ = 0, the sampling process without condition
is just the ζc.

5 Conclusion

In this work, we presented a novel model of tabular data
generator GANBLR++, which can generate both categorical
and numerical attributes. Our proposed GANBLR++ is
based on recently developed GANBLR framework, and
builds on discriminatively trained unrestricted Bayesian
Networks as the generator as well as discriminator,
which learns by optimizing a game-theoretic objective
function. We showed that GANBLR++ not only advances
the existing SOTA GAN-based models including GANBLR,
but also leads to excellent quality data when numerical
sampling is required. The experiment results based on
both machine learning utility and statistical similarity,
when compared against several SOTA baselines, suggests
that the GANBLR++ can provide better quality synthetic
datasets. In the future, we would like to extend the work
on adding differential privacy to the process of synthetic
data generation.
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